Skip to main content
Log in

Effect of Relative Humidity on the Tribological Performance of Pure Sliding Contacts Lubricated with Phosphorus Additive Containing Lubricants

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Prior research with zinc dialkyl dithiophosphate (ZDDP) additive has shown that higher relative humidity can result in higher wear. In order to validate this phenomenon, a phosphoric additive was added to the same base oil as previous studies to explore the effect of relative humidity and water on the related tribological performances in pure sliding contacts. The post-test specimen surfaces were examined under scanning electron microscope to study the effect of relative humidity on the surface, followed by applying x-ray photoelectron spectroscopy to study the related tribochemistry behavior. It is clear that higher relative humidity results in higher wear. Oxygen concentration as oxide in the wear scar increases with the increase in relative humidity. The reaction layer thickness decreases with the increase in relative humidity, which leads to more asperity contacts and results in higher wear on the ball surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from Wolfe (Ref 24), with permission from Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.J. Fitch and S. Jaggernauth, Moisture, the Second Most Destructive Lubricant Contaminant, and Its Effects on Bearing Life, P/PM Technol., 1994, 5, p 50–53

    Google Scholar 

  2. M. Day and C. Bauer, Water Contamination in Hydraulic and Lube Systems, Pract. Oil Anal., 2007, 9, p 2007

    Google Scholar 

  3. R.M. Gresham, When Oil and Water Do Mix, Tribol. Lubr. Technol., 2008, 64(3), p 22

    CAS  Google Scholar 

  4. D. Troyer, The Visual Crackle-A New Twist to an Old Technique, Pract. Oil Anal. Mag., 1998, 10, p 14–17

    Google Scholar 

  5. W.M. Needelman, M.A. Barris, and G.L. Lavallee, Contamination Control for Wind Turbine Gearboxes, Power Eng. (Barrington, Illinois), 2009, 113(11), p 112–120

    Google Scholar 

  6. M. Duncanson, Machinery Lubrication: Detecting and Controlling Water in Oil, Pract. Oil Anal., 2005, 9, p 20–21

    Google Scholar 

  7. J.K. Lancaster, A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear, Tribol. Int., 1990, 23(6), p 371–389

    Article  CAS  Google Scholar 

  8. Z. Chen, X. He, C. Xiao, and S.H. Kim, Effect of Humidity on Friction and Wear-A Critical Review, Lubricants, 2018, 6(3), p 1–26

    Article  Google Scholar 

  9. L. Grunberg and D. Scott, The Acceleration of Pitting Failure by Water in the Lubricant, J. Inst. Pet., 1958, 44(419), p 406–410

    CAS  Google Scholar 

  10. P. Schatzberg and I.M. Felsen, Effects of Water and Oxygen during Rolling Contact Lubrication, Wear, 1968, 12(5), p 331–342

    Article  CAS  Google Scholar 

  11. E.L. Armstrong, S.J. Leonardi, W.R. Murphy, and P.S. Wooding, Evaluation of Water-Accelerated Bearing Fatigue in Oil-Lubricated Ball Bearings, Lubric. Eng., 1978, 34(1), p 15–21

    CAS  Google Scholar 

  12. V. Brizmer, H.R. Pasaribu, and G.E. Morales-Espejel, Micropitting Performance of Oil Additives in Lubricated Rolling Contacts, Tribol. Trans., 2013, 56(5), p 739–748

    Article  CAS  Google Scholar 

  13. E. Harika, J. Bouyer, M. Fillon, and M. Hélène, Measurements of Lubrication Characteristics of a Tilting Pad Thrust Bearing Disturbed by a Water-Contaminated Lubricant, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2013, 227(1), p 16–25

    Article  Google Scholar 

  14. E. Harika, J. Bouyer, M. Fillon, and M. Hélène, Effects of Water Contamination of Lubricants on Hydrodynamic Lubrication: Rheological and Thermal Modeling, J. Tribol., 2013, 135(4), p 1–10

    Article  Google Scholar 

  15. A.C. Gonçalves and L.R. Padovese, Vibration and Oil Analysis for Monitoring Problems Related to Water Contamination in Rolling, Proceedings-International Brazilian Conference on Tribology, 2010, p 80–90.

  16. I. Nedelcu, E. Piras, A. Rossi, and H.R. Pasaribu, XPS Analysis on the Influence of Water on the Evolution of Zinc Dialkyldithiophosphate-Derived Reaction Layer in Lubricated Rolling Contacts, Surf. Interface Anal., 2012, 44(8), p 1219–1224. https://doi.org/10.1002/sia.4853

    Article  CAS  Google Scholar 

  17. H. Cen, A. Morina, A. Neville, R. Pasaribu, and I. Nedelcu, Effect of Water on ZDDP Anti-Wear Performance and Related Tribochemistry in Lubricated Steel/Steel Pure Sliding Contacts, Tribol. Int., 2012, 56, p 47–57. https://doi.org/10.1016/j.triboint.2012.06.011

    Article  CAS  Google Scholar 

  18. H. Cen, A. Morina, and A. Neville, Effect of Ageing on Lubricants’ Physical and Chemical Properties and Tribological Performance: Part II: Effect of Water Contamination on Lubricant, Ind. Lubr. Tribol., 2019, 71(1), p 48–53

    Article  Google Scholar 

  19. P. Parsaeian, A. Ghanbarzadeh, M. Wilson, M.C.P. Van Eijk, I. Nedelcu, D. Dowson, A. Neville, and A. Morina, An Experimental and Analytical Study of the Effect of Water and Its Tribochemistry on the Tribocorrosive Wear of Boundary Lubricated Systems with ZDDP-Containing Oil, Wear, 2016, 358–359, p 23–31. https://doi.org/10.1016/j.wear.2016.03.017

    Article  CAS  Google Scholar 

  20. P. Parsaeian, A. Ghanbarzadeh, M.C.P. Van Eijk, I. Nedelcu, A. Morina, and A. Neville, Study of the Interfacial Mechanism of ZDDP Tribofilm in Humid Environment and Its Effect on Tribochemical Wear, Part II: Numerical, Tribol. Int., 2017, 107((November 2016)), p 33–38. https://doi.org/10.1016/j.triboint.2016.11.015

    Article  CAS  Google Scholar 

  21. S. Soltanahmadi, A. Morina, M.C.P. van Eijk, I. Nedelcu, and A. Neville, Tribochemical Study of Micropitting in Tribocorrosive Lubricated Contacts: The Influence of Water and Relative Humidity, Tribol. Int., 2017, 107(August 2016), p 184–198

    Article  CAS  Google Scholar 

  22. H. Cen, A. Morina, and A. Neville, Effect of Slide to Roll Ratio on the Micropitting Behaviour in Rolling-Sliding Contacts Lubricated with ZDDP-Containing Lubricants, Tribol. Int., 2018, 122, p 210–217. https://doi.org/10.1016/j.triboint.2018.02.038

    Article  CAS  Google Scholar 

  23. H. Cen, A. Morina, and A. Neville, Effect of Base Oil Polarity on the Micropitting Behaviour in Rolling-Sliding Contacts, Lubr. Sci., 2019, https://doi.org/10.1002/ls.1453

    Article  Google Scholar 

  24. N.L. Wolfe, Organophosphate and Organophosphorothionate Esters: Application of Linear Free Energy Relationships to Estimate Hydrolysis Rate Constants for Use in Environmental Fate Assessment, Chemosphere, 1980, 9(9), p 571–579. https://doi.org/10.1016/0045-6535(80)90075-2

    Article  CAS  Google Scholar 

  25. Y. Arai and D.L. Sparks, ATR-FTIR Spectroscopic Investigation on Phosphate Adsorption Mechanisms at the Ferrihydrite-Water Interface, J. Colloid Interface Sci., 2001, 241(2), p 317–326

    Article  CAS  Google Scholar 

  26. F.J. Archard, Elastic Deformation and the Contact of Surfaces, Nature, 1953, 172(4385), p 918–919

    Article  Google Scholar 

  27. J.M. Martin, Antiwear Mechanisms of Zinc Dithiophosphate: A Chemical Hardness Approach, Tribol. Lett., 1999, 6(1), p 1–8

    Article  CAS  Google Scholar 

  28. S. Soltanahmadi, A. Morina, M.C.P. Van-Eijk, I. Nedelcu, and A. Neville, Investigation of the Effect of a Diamine-Based Friction Modifier on Micropitting and the Properties of Tribofilms in Rolling-Sliding Contacts, J. Phys. D. Appl. Phys., 2016, 49(50), p 505302. https://doi.org/10.1088/0022-3727/49/50/505302

    Article  CAS  Google Scholar 

  29. Y. Shimizu and H.A. Spikes, The Influence of Slide-Roll Ratio on ZDDP Tribofilm Formation, Tribol. Lett., 2016, 64(2), p 19. https://doi.org/10.1007/s11249-016-0738-z

    Article  CAS  Google Scholar 

  30. M.A. Nicholls, T. Do, P.R. Norton, M. Kasrai, and G.M. Bancroft, Review of the Lubrication of Metallic Surfaces by Zinc Dialkyl-Dithiophosphates, Tribol. Int., 2005, 38(1), p 15–39. https://doi.org/10.1016/j.triboint.2004.05.009

    Article  CAS  Google Scholar 

  31. T.L. Krantz and A. Kahraman, An Experimental Investigation of the Influence of the Lubricant Viscosity and Additives on Gear Wear, Tribol. Trans., 2004, 47(1), p 138–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support by National Natural Science Foundation of China (Grant No. 51905463) as well as the outstanding young core teacher program of Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, H., Bai, D., Chao, Y. et al. Effect of Relative Humidity on the Tribological Performance of Pure Sliding Contacts Lubricated with Phosphorus Additive Containing Lubricants. J. of Materi Eng and Perform 29, 4786–4793 (2020). https://doi.org/10.1007/s11665-020-04977-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04977-6

Keywords

Navigation