Skip to main content
Log in

Mechanical and Tribological Characterization of a Novel Hybrid Aluminum/Al2O3/RGO Composite Synthesized Using Powder Metallurgy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Recently, graphene has lent itself as a promising additive to obtain aluminum-based matrix composites of superior mechanical strength and outstanding wear resistance. In this investigation, composite samples are synthesized by adding reduced graphene oxide (RGO) and alumina (Al2O3) particles to aluminum metal matrix via powder metallurgy technique. RGO is fabricated using modified hammer's method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and FTIR (Fourier Transform Infrared). The synthesized composite samples are tested in wear using a developed pin on disk test setup. The microstructure of each sample is examined using optical microscope as well as SEM, while the hardness values are measured using Vickers microhardness tester. Experimental results clearly indicate that adding RGO to the aluminum matrix considerably enhances its wear resistance when compared to Al2O3 additive, i.e., the results prove superior lubricant characteristics of graphene. In addition, hybrid composite specimens from Al2O3 and graphene demonstrate remarkably higher hardness values than those reinforced by each single additive. Increasing Al2O3 wt.% results in a considerable agglomeration of particles leading to deterioration of the mechanical and tribological properties in both hybrid and single additive specimens. In the investigated range, the highest hardness and wear resistance are manifested by hybrid composite containing 0.3 wt.% RGO and 5 wt.% Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. Karbalaei-Akbari, O. Mirzaee and H.R. Baharvandi, Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on the Parameters of Vortex Method, Mater. Des., 2013, 46, p 199–205. https://doi.org/10.1016/j.matdes.2012.10.008

    Article  CAS  Google Scholar 

  2. A. Mazahery, H. Abdizadeh and H.R. Baharvandi, Development of High-Performance A356/nano-Al2O3 Composites, Mater. Sci. Eng. A, 2009, 518(1–2), p 61–64. https://doi.org/10.1016/j.msea.2009.04.014

    Article  CAS  Google Scholar 

  3. S.A. Sajjadi, H.R. Ezatpour and H. Beygi, Microstructure and Mechanical Properties of Al-Al2O3 Micro and Nano Composites Fabricated by Stir Casting, Mater. Sci. Eng. A, 2011, 528(29–30), p 8765–8771. https://doi.org/10.1016/j.msea.2011.08.052

    Article  CAS  Google Scholar 

  4. S.A. Sajjadi, H.R. Ezatpour and M. Torabi-Parizi, Comparison of Microstructure and Mechanical Properties of A356 Aluminum alloy/Al2O3 Composites Fabricated by Stir and Compo-Casting Processes, Mater. Des., 2012, 34, p 106–111. https://doi.org/10.1016/j.matdes.2011.07.037

    Article  CAS  Google Scholar 

  5. S. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652. https://doi.org/10.1002/adem.200700106

    Article  CAS  Google Scholar 

  6. M. Kök and K. Ozdin, Wear Resistance of Aluminium Alloy and Its Composites Reinforced by Al2O3 Particles, J. Mater. Process. Technol., 2007, 183(2–3), p 301–309. https://doi.org/10.1016/j.jmatprotec.2006.10.021

    Article  CAS  Google Scholar 

  7. M. Rahimian, N. Parvin and N. Ehsani, The Effect of Production Parameters on Microstructure and Wear Resistance of Powder Metallurgy Al-Al2O3 Composite, Mater. Des., 2011, 32(2), p 1031–1038. https://doi.org/10.1016/j.matdes.2010.07.016

    Article  CAS  Google Scholar 

  8. W.-M. Tian, S.-M. Li, B. Wang, X. Chen, J.-H. Liu and M. Yu, Graphene-Reinforced Aluminum Matrix Composites Prepared by Spark Plasma Sintering, Int. J. Miner. Metall. Mater., 2016, 23(6), p 723–729. https://doi.org/10.1007/s12613-016-1286-0

    Article  CAS  Google Scholar 

  9. M. Kostecki, J. Woźniak, T. Cygan, M. Petrus and A. Olszyna, Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene-The Influence of Spark Plasma Texturing Process, Materials, 2017, 10(8), p 928. https://doi.org/10.3390/ma10080928

    Article  CAS  Google Scholar 

  10. P. Bai et al., Microstructure and Tribological Behavior of Graphene/Al Composites Produced by Selective Laser Melting, Mater. Res. Express, 2019, 6(10), p 1065c1. https://doi.org/10.1088/2053-1591/ab3ef5

    Article  CAS  Google Scholar 

  11. V. Jain, A. Kumar, B. Sivaiah and A. Dhar, Synthesis of Aluminium-Graphene Nanocomposite Sintered Using Spark Plasma Sintering, Frontiers in Materials Processing. M. Muruganant, A. Chirazi, B. Raj Ed., Applications, Research and Technology, Springer Singapore, 2018, p 155–164. https://doi.org/10.1007/978-981-10-4819-7_14

    Chapter  Google Scholar 

  12. B. Sahoo, J. Joseph, A. Sharma and J. Paul, Particle Size and Shape Effects on the Surface Mechanical Properties of Aluminium Coated with Carbonaceous Materials, J. Compos. Mater., 2018, 53(2), p 261–270. https://doi.org/10.1177/0021998318781932

    Article  CAS  Google Scholar 

  13. B. Sahoo, D. Narsimhachary and J. Paul, Tribological Characteristics of Aluminium-CNT/Graphene/Graphite Surface Nanocomposites: A Comparative Study, Surf. Topogr. Metrol. Prop., 2019, 7(3), p 034001. https://doi.org/10.1088/2051-672X/ab3025

    Article  CAS  Google Scholar 

  14. M. Alipour, R. Farsani and Y. Abuzin, Influence of Graphene Nanoplatelet Reinforcements on Microstructural Development and Wear Behavior of an Aluminum Alloy Nanocomposite, Metal-Matrix Composites Innovations, Advances and Applications. TMS 2018. The Minerals, Metals and Materials Series. T. Srivatsan, Y. Zhang, W. Harrigan Jr. Ed., Springer, Berlin, 2018, p 233–246. https://doi.org/10.1007/978-3-319-72853-7_16

    Chapter  Google Scholar 

  15. A. Sharma, V.M. Sharma and J. Paul, Fabrication of Bulk Aluminum-Graphene Nanocomposite through Friction Stir Alloying, J. Compos. Mater., 2019, 54(1), p 45–60. https://doi.org/10.1177/0021998319859427

    Article  CAS  Google Scholar 

  16. J. Babu, A. Srinivasan and C. Kang, Nano and Macromechanical Properties of Aluminium (A356) Based Hybrid Composites Reinforced with Multiwall Carbon Nanotubes/Alumina Fiber, J. Compos. Mater., 2016, 51(11), p 1631–1642. https://doi.org/10.1177/0021998316661228

    Article  CAS  Google Scholar 

  17. S. Singh, G. Singh, L. Kumar and S. Singh, Microstructural Analysis and Tribological Behavior of Aluminum Alloy Reinforced with Hybrid Alumina/Nanographite Particles, Arch. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2015, 229(5), p 597–608. https://doi.org/10.1177/1350650114556399

    Article  CAS  Google Scholar 

  18. Z. Zhang, G. Zhu, C. Xu and B. Hu, Microstructure and Wear Resistance of a Composite Gr/Al2O3/Al Produced by Reciprocating Extrusion, Int. J. Mod. Phys. Conf. Ser., 2012, 5, p 646–653. https://doi.org/10.1142/S2010194512002589

    Article  CAS  Google Scholar 

  19. A. Baradeswaran and A. Perumal, Study on Mechanical and Wear Properties of Al7075/Al2O3/Graphite Hybrid Composites, Compos. Part B Eng., 2014, 56, p 464–471. https://doi.org/10.1016/j.compositesb.2013.08.013

    Article  CAS  Google Scholar 

  20. L. Jinfeng, J. Longtao, W. Gaohui, T. Shoufu and C. Guoqin, Effect of Graphite Particle Reinforcement on Dry Sliding Wear of SiC/Gr/Al Composites, Rare Metal Mater. Eng., 2009, 38(11), p 1894–1898. https://doi.org/10.1016/S1875-5372(10)60059-8

    Article  Google Scholar 

  21. P. Ma et al., Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites, Metals, 2017, 7(9), p 359. https://doi.org/10.3390/met7090359

    Article  CAS  Google Scholar 

  22. L. Yolshina, R. Muradymov, A. Kvashnichev, D. Vichuzhanin, N. Molchanova and A. Pankratov, Synthesis of New Metal-Matrix Al-Al2O3-Graphene Composite Materials, Russ. Metall. (Metally), 2017, 2017(8), p 631–641. https://doi.org/10.1134/S0036029517080031

    Article  Google Scholar 

  23. P.P. Brisebois and M. Siaj, Harvesting Graphene Oxide-Years 1859 to 2019: A Review of Its Structure, Synthesis, Properties and Exfoliation, J. Mater. Chem. C, 2020, 8(5), p 1517–1547. https://doi.org/10.1039/C9TC03251G

    Article  CAS  Google Scholar 

  24. L. Shahriary and A. Athawale, Graphene Oxide Synthesized by Using Modified Hummers Approach, Renew. Energy Environ. Eng., 2014, 2, p 58–63.

    Google Scholar 

  25. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu and C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Proc. Eng., 2017, 184, p 469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  26. P. Echlin, Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, Springer, Cambridge, 2009. https://doi.org/10.1007/978-0-387-85731-2

    Book  Google Scholar 

  27. ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken, 2017. doi: https://doi.org/10.1520/E0384-17

  28. ASTM G77-17, Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test. ASTM International, West Conshohocken, 2017. doi: https://doi.org/10.1520/G0077-17

  29. D. Xiaoming, R.Q. Chen and F.G. Liu, Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites, Digest J. Nanomater. Biostruct., 2017, 12(1), p 37–45.

    Google Scholar 

  30. H.G. Kumar and A. Xavior, Tribological Aspects of Graphene-Aluminum Nanocomposites, Graphene Mater. Struct. Prop. Modif., 2017 https://doi.org/10.5772/67475

    Article  Google Scholar 

  31. D. Koli, G. Agnihotri and R. Purohit, Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review), Int. J. Latest Trends Eng. Technol., 2013, 2(4), p 486–496.

    Google Scholar 

  32. N. Seyed-Pourmand and H. Asgharzadeh, Aluminum Matrix Composites Reinforced with Graphene: A Review on Production, Microstructure, and Properties, Crit. Rev. Solid State Mater. Sci., 2020, 45(4), p 289–337. https://doi.org/10.1080/10408436.2019.1632792

    Article  CAS  Google Scholar 

  33. Z. Li et al., Uniform Dispersion of Graphene Oxide in Aluminum Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminum Composites, Nanotechnology, 2014, 25(32), p 325601. https://doi.org/10.1088/0957-4484/25/32/325601

    Article  CAS  Google Scholar 

  34. W. Yang et al., Graphene Nanoflakes Reinforced Al-20Si Matrix Composites Prepared by Pressure Infiltration Method, Mater. Sci. Eng. A, 2017, 700, p 351–357. https://doi.org/10.1016/j.msea.2017.06.027

    Article  CAS  Google Scholar 

  35. A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition (in eng), Nano Lett, 2009, 9(1), p 30–35. https://doi.org/10.1021/nl801827v

    Article  CAS  Google Scholar 

  36. H. Zhang, C. Xu, W. Xiao, K. Ameyama and C. Ma, Enhanced Mechanical Properties of Al5083 Alloy with Graphene Nanoplates Prepared by Ball Milling and Hot Extrusion, Mater. Sci. Eng. A, 2016, 658, p 8–15. https://doi.org/10.1016/j.msea.2016.01.076

    Article  CAS  Google Scholar 

  37. A. El-Ghazaly, G. Anis and H.G. Salem, Effect of Graphene Addition on the Mechanical and Tribological Behavior of Nanostructured AA2124 Self-lubricating Metal Matrix Composite, Compos. Part A Appl. Sci. Manuf., 2017, 95, p 325–336. https://doi.org/10.1016/j.compositesa.2017.02.006

    Article  CAS  Google Scholar 

  38. J. Blanco-Fernandez, E. Jimenez-Macias, J.C. Saenz-Diez-Muro, L.S. Caputi, D. Miriello, R. De Luca, A. Sanchez-Roca and H.D. Carvajal-Fals, Tribological Behavior of AA1050H24-Graphene Nanocomposite Obtained by Friction Stir Processing, Metals, 2018, 8, p 113. https://doi.org/10.3390/met8020113

    Article  CAS  Google Scholar 

  39. M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes and P.K. Rohatgi, Tribological Performance of Self-lubricating Aluminum Matrix Nanocomposites: Role of Graphene Nanoplatelets, Eng. Sci. Technol. Int. J, 2016, 19(1), p 463–469. https://doi.org/10.1016/j.jestch.2015.09.005

    Article  Google Scholar 

  40. Z. Xu, Q. Zhang, P. Jing and W. Zhai, High-Temperature Tribological Performance of TiAl Matrix Composites Reinforced by Multilayer Graphene, Tribol Lett, 2015, 58(3), p 1–9. https://doi.org/10.1007/s11249-015-0482-9

    Article  CAS  Google Scholar 

  41. B. Yazdani, F. Xu, I. Ahmad, X. Hou, Y. Xia and Y. Zhu, Tribological Performance of Graphene/Carbon Nanotube Hybrid Reinforced Al2O3 Composites, Sci. Rep., 2015, 5(1), p 1–11. https://doi.org/10.1038/srep11579

    Article  Google Scholar 

  42. P. Uzoma, H. Hu, M. Khadem and O. Penkov, Tribology of 2D Nanomaterials: A Review, Coatings, 2020, 10(9), p 897. https://doi.org/10.3390/coatings10090897

    Article  CAS  Google Scholar 

  43. B. Nassef, G. Nassef and M. Abd-Elmonem-Daha, Graphene and Its Industrial Applications: A Review, Int. J. Eng. Mater. SAP, 2020, 10(1), p 1–12. https://doi.org/10.5923/j.ijme.20201001.01

    Article  Google Scholar 

  44. H.G. Prashantha-Kumar and M. Anthony-Xavior, Tribological Aspects of Graphene-Aluminum Nanocomposites, in Graphene Materials-Structure, Properties and Modifications, 2017. doi: https://doi.org/10.5772/67475

  45. R.R. Raj, J. Yoganandh, M.S.S. Saravanan and S.S. Kumar, Effect of Graphene Addition on the Mechanical Characteristics of AA7075 Aluminium Nanocomposites, Carbon Lett., 2020 https://doi.org/10.1007/s42823-020-00157-7

    Article  Google Scholar 

  46. J. Lin, L. Wang and G. Chen, Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive, Tribol. Lett., 2011, 41(1), p 209–215. https://doi.org/10.1007/s11249-010-9702-5

    Article  CAS  Google Scholar 

  47. M.C. Şenel, M. Gürbüz and E. Koç, Mechanical and Tribological Behaviours of Aluminium Matrix Composites Reinforced by Graphene Nanoplatelets, Mater. Sci. Technol., 2018, 34(16), p 1980–1989. https://doi.org/10.1080/02670836.2018.1501839

    Article  CAS  Google Scholar 

  48. S. Dharmalingam, S. Ramanathan and S. Vinoth, Analysis of Dry Sliding Friction and Wear Behavior of Aluminum-Alumina Composites using Taguchi’s Techniques, J. Compos. Mater., 2010, 44, p 2161–2177. https://doi.org/10.1177/0021998310365175

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge technical support from SARTA City and Egypt Japan University of Science and Technology, Alexandria, Egypt, for enabling some instrumentation for experimental investigation. Also, they acknowledge Prof. Dr. Dina El-Gayar, Alexandria University, Egypt, for preparing graphene which was used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belal Galal Nassef.

Ethics declarations

Conflict of interest

Belal Galal Nassef certifies that he has no financial conflict of interest (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) in connection with this article. Mohamed Abd-Elmonem Daha certifies that he has no financial conflict of interest (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) in connection with this article. M. G. A. Nassef certifies that he has no financial conflict of interest (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) in connection with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daha, M.A., Nassef, B.G. & Nassef, M.G.A. Mechanical and Tribological Characterization of a Novel Hybrid Aluminum/Al2O3/RGO Composite Synthesized Using Powder Metallurgy. J. of Materi Eng and Perform 30, 2473–2481 (2021). https://doi.org/10.1007/s11665-021-05547-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05547-0

Keywords

Navigation