Skip to main content
Log in

Effect of Heat Treatment Process on Microstructure and Crystallography of 20CrMnTiH Spur Bevel Gear

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Obtaining excellent mechanical properties of spur bevel gear has been widely emphasized, owing to its indispensable effect on momentum. However, the conventional long-time and high-temperature heat treatment can cause microstructure coarsening, which dramatically decreases the mechanical properties. Since the normalizing process can significantly modulate the mechanical properties of spur bevel gears by adjusting their microstructure and crystallography behaviors, in the present study, the normalizing before or after carburizing heat treatment processes (NBCP and NACP, respectively) were proposed. The effect of heat treatment processes on the microstructure and crystallography of gear specimens was investigated. The results show that both NBAP and NACP had a strong effect on microstructure refinement and hardness improvement compared to the conventional process. NBCP raised the tendency for AlN precipitation, which could retard the microstructure coarsening during carburizing. Furthermore, NACP directly promoted the precipitation of globular Cr-rich M3C carbides which achieved the strongest pinning effect and brought about extremely fine microstructure. For crystallographic analysis, the 24 martensite variants in all gear specimens held Kurdjumov–Sachs orientation relationship to parent austenite. The orientations of martensite variants in gear specimens applying conventional process and NBCP were distributed regularly. However, the orientations of martensite variants in NACP gear specimen did not follow the strict rule for variant selection inside prior austenite grains owing to the distortive effect of diffuse M3C carbides on the matrix, and the adjacent martensite variants possessed less sharing of {110} habit plane compared to NBCP and conventional process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. X.B. Deng, L. Hua, X.H. Han, and Y. Song, Numerical and Experimental Investigation of Cold Rotary Forging of a 20CrMnTi Alloy Spur Bevel Gear, Mater. Des., 2011, 32, p 1376–1389

    Article  CAS  Google Scholar 

  2. T. Henke, M. Bambach, and G. Hirt, Quantification of Uncertainties in Grain Size Predictions of a Microstructure-Based Flow Stress Model and Application to Gear Wheel Forging, CIRP Annu. Manuf. Technol., 2013, 62, p 287–290

    Article  Google Scholar 

  3. X. Hu, L. Hua, and X.H. Han, Study on the Microstructure and Texture Evolution of Hot Forged 20CrMnTiH Steel Spur Bevel Gear by Simulation and Experiment, J. Mater. Eng. Perform., 2020, 29, p 3688–3701

    Article  CAS  Google Scholar 

  4. Y. Wei, L. Zhang, and R.D. Sisson, Jr., Modeling of Carbon Concentration Profile Development During Both Atmosphere and Low Pressure Carburizing Processes, J. Mater. Eng. Perform., 2013, 22, p 1886–1891

    Article  CAS  Google Scholar 

  5. B. Jiang, Z. Mei, L.Y. Zhou, G.L. Liu, Z.L. Wang, B. Huang, and Y.Z. Liu, High Toughness and Multiphase Microstructure Transition Product of Carburizing Steel by a Novel Heat Treatment Cooling Process, Mater. Sci. Eng. A, 2016, 675, p 361–370

    Article  CAS  Google Scholar 

  6. O. Asi, A.Ç. Can, J. Pineault, and M. Belassel, The Effect of High Temperature Gas Carburizing on Bending Fatigue Strength of SAE 8620 Steel, Mater. Des., 2009, 30, p 1792–1797

    Article  CAS  Google Scholar 

  7. Y.F. Ivanov, N.N. Koval, S.V. Gorbunov, S.V. Vorobyov, S.V. Konovalov, and V.E. Gromov, Multicyclic Fatigue of Stainless Steel Treated by a High-Intensity Electron Beam: Surface Layer Structure, Russ. Phys. J., 2011, 54, p 575–583

    Article  CAS  Google Scholar 

  8. J.L. Pacheco and G. Krauss, Microstructure and High Bending Fatigue Strength in Carburized Steel, J. Heat Treat., 1989, 7, p 77–86

    Article  CAS  Google Scholar 

  9. K.O. Lee, S.K. Hong, Y.K. Kang, H.J. Yoon, and S.S. Kang, Grain Refinement in Bearing Steels Using a Double-Quenching Heat-Treatment Process, Int. J. Automot. Technol., 2009, 10, p 697–702

    Article  Google Scholar 

  10. R.P. Brobst and G. Krauss, The Effect of Austenite Grain Size on Microcracking in Martensite of an Fe-1.22C Alloy, Metall. Mater. Trans. B, 1974, 5, p 457–462

    Article  CAS  Google Scholar 

  11. Y.L. Chang, P.Y. Chen, Y.T. Tsai, and J.R. Yang, Crystallographic Analysis of Lenticular Martensite in Fe-1.0C-17Cr Stainless Steel by Electron Backscatter Diffraction, Mater. Charact., 2016, 113, p 17–25

    Article  CAS  Google Scholar 

  12. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288

    Article  CAS  Google Scholar 

  13. N.M. Ryzhov, M.Y. Semenov, R.S. Fakhurtdinov, and A.E. Smirnov, A Model of Diffusion Growth of Carbide-Phase Particles in the Carburized Layer of Heat-Resistant Steels, Met. Sci. Heat Treat., 1998, 40, p 374–377

    Article  CAS  Google Scholar 

  14. J. Wang, Z. Sun, R. Zuo, C. Li, B. Shen, S. Gao, and S. Huang, Effects of Secondary Carbide Precipitation and Transformation on Abrasion Resistance of the 16Cr-1Mo-1Cu White Iron, J. Mater. Eng. Perform., 2006, 15, p 316–319

    Article  CAS  Google Scholar 

  15. S.H. Choi, E.Y. Kim, W. Woob, S.H. Han, and J.H. Kwak, The Effect of Crystallographic Orientation on the Micromechanical Deformation and Failure Behaviors of DP980 Steel During Uniaxial Tension, Int. J. Plast., 2013, 45, p 85–102

    Article  CAS  Google Scholar 

  16. T.H. Lee, C.S. Oh, S.H. Ryu, and J.T. Kim, Crystallography and Morphology of Carbides in a Low-Cycle Fatigued 1Cr-1Mo-0.25V Steel, Metall. Mater. Trans. A, 2010, 42, p 147–157

    Article  CAS  Google Scholar 

  17. Y. Fang, X. Chen, B. Madigan, H. Cao, and S. Konovalov, Effects of Strain Rate on the Hot Deformation Behavior and Dynamicrecrystallization in China Low Activation Martensitic Steel, Fusion Eng. Des., 2016, 103, p 21–30

    Article  CAS  Google Scholar 

  18. L. Jena and P. Heich, Microcracks in Carburized and Hardened Steel, Metall, Mater. Trans. B, 1972, 2, p 592–594

    Article  Google Scholar 

  19. K.O. Lee, S.K. Hong, Y.K. Kang, H.J. Yoon, and S.S. Kang, Grain Refinement in Bearing Steels Using a Double-Quenching Heat-Treatment Process, Int. J. Auto. Tech-Kor, 2009, 6, p 697–702

    Article  Google Scholar 

  20. T. Fujimatsu, M. Nishikawa, K. Hashimoto, and A. Yamamoto, Influence of Repeated Quenching After Carburizing on Prior Austenite Grain Size, Mater. Sci. Forum, 2007, 561–565, p 2345–2348

    Article  Google Scholar 

  21. M. Abbasi, D.I. Kim, T.W. Nelson, and M. Abbasi, EBSD and Reconstruction of Pre-Transformation Microstructures, Examples and Complexities in Steels, Mater. Charact., 2014, 95, p 219–231

    Article  CAS  Google Scholar 

  22. M. Eskandari, M.A. Mohtadi-Bonab, R. Basu, M. Nezakat, A. Kermanpur, J.A. Szpunar, S. Nahar, and A.H. Baghpanah, Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion, J. Mater. Eng. Perform., 2015, 24, p 644–653

    Article  CAS  Google Scholar 

  23. H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minamino, Crystallographic Analysis of Plate Martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD, Mater. Charact., 2005, 54, p 378–386

    Article  CAS  Google Scholar 

  24. T.N. Durlu, Strain-Induced Martensite Formation During the Intersection of Plate Martensites in Fe-17.1 wt% Ni-0.81 wt.% C alloy, J. Mater. Sci. Lett., 1996, 15, p 1412–1415

    Article  CAS  Google Scholar 

  25. C. Wang, H. Qiu, Y. Kimura, and T. Inoue, Morphology, Crystallography, and Crack Paths of Tempered Lath Martensite in a Medium-Carbon Low-Alloy Steel, Mater. Sci. Eng. A, 2016, 669, p 48–57

    Article  CAS  Google Scholar 

  26. B. Mintz, S. Tajik, and R. Vipond, Influence of Microalloying Additions on Thickness of Grain Boundary Carbides in Ferrite-Pearlite Steels, Mater. Sci. Technol., 1994, 10, p 89–96

    Article  CAS  Google Scholar 

  27. M. Hillert, Inhibition of Grain Growth by Second-Phrase Particles, Acta Metall., 1988, 36, p 3177–3181

    Article  CAS  Google Scholar 

  28. W. Xu, P.E.J. Rivera-Dίaz-del-Castillo, W. Yan, K. Yang, D.S. Martίn, L.A.I. Kestens, and S. van der Zwaag, A New Ultrahigh-Strength Stainless Steel Strengthened by Various Coexisting Nanoprecipitates, Acta Mater., 2010, 58, p 4067–4075

    Article  CAS  Google Scholar 

  29. J. Dong, C. Liu, Y. Liu, C. Li, Q. Guo, and H. Li, Effects of Two Different Types of MX Carbonitrides on Austenite Growth Behavior of Nb-V-Ti Microalloyed Ultra-High Strength Steel, Fusion Eng. Des., 2017, 125, p 415–422

    Article  CAS  Google Scholar 

  30. J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, and Q. Guo, Carbide Precipitation in Nb-V-Ti Microalloyed Ultra-High Strength Steel During Tempering, Mater. Sci. Eng. A, 2017, 683, p 215–226

    Article  CAS  Google Scholar 

  31. T. Kozmel and S. Tin, Effects of Carbides on the Microstructural Evolution in Sub-Micron Grain 9310 Steel During Isothermal Heat Treatment, Metall. Mater. Trans. A, 2015, 46, p 3208–3219

    Article  CAS  Google Scholar 

  32. L.D. Liu and F.S. Chen, Super-Carburization of Low Alloy Steel in a Vacuum Furnace, Surf. Coat. Technol., 2004, 183, p 233–238

    Article  CAS  Google Scholar 

  33. M. Nurbanasari, P. Tsakiropoulos, and E.J. Palmiere, A Study of Carbide Precipitation in a H21 Tool Steel, ISIJ Int., 2014, 54, p 1667–1676

    Article  CAS  Google Scholar 

  34. N. Saini, C. Pandey, and M.M. Mahapatra, Characterization and Evaluation of Mechanical Properties of CSEF P92 Steel for Varying Normalizing Temperature, Mater. Sci. Eng. A, 2017, 688, p 250–261

    Article  CAS  Google Scholar 

  35. T. Giordani, T.R. Clarke, C.E.F. Kwietniewski, M.A. Aronov, N.I. Kobasko, and G.E. Totten, Mechanical and Metallurgical Evaluation of Carburized, Conventionally and Intensively Quenched Steels, J. Mater. Eng. Perform., 2013, 22, p 2304–2313

    Article  CAS  Google Scholar 

  36. I. Fedorova, F. Liu, F.B. Grumsen, Y. Cao, O.V. Mishin, and J. Hald, Fine (Cr, Fe)2B Borides on Grain Boundaries in a 10Cr-0.01B Martensitic Steel, Script. Mater., 2018, 156, p 124–128

    Article  CAS  Google Scholar 

  37. K.P. Cooper and H.N. Jones, III, Phase Transformation-Induced Grain Refinement in Rapidly Solidified Ultra-High-Carbon Steels, Metall. Mater. Trans. A, 2002, 33, p 2789–2799

    Article  Google Scholar 

  38. L. Zhang, T. Ohmura, A. Shibata, and K. Tsuzaki, Characterization of Local Deformation Behavior of Fe-Ni Lenticular Martensite by Nanoindentation, Mater. Sci. Eng. A, 2010, 527, p 1869–1874

    Article  CAS  Google Scholar 

  39. H.K.D.H. Bhadeshia, M. Déchamps, and L.M. Brown, The Structure of Twins in Fe-Ni Martensite, Acta Matell., 1981, 29, p 1473–1474

    Article  CAS  Google Scholar 

  40. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys, Mater. Sci. Eng. A, 2004, 387–389, p 158–162

    Article  CAS  Google Scholar 

  41. Y.I. Ustinovshikov, Precipitation in Solids, J. Mater. Sci., 1992, 27, p 3993–4002

    Article  Google Scholar 

  42. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The Morphology and Crystallography of Lath Martensite in Fe-C Alloys, Acta Mater., 2003, 51, p 1789–1799

    Article  CAS  Google Scholar 

  43. N. Nakada, Direct Observation of Martensitic Reversion from Lenticular Martensite to Austenite in Fe-Ni Alloy, Mater. Lett., 2017, 187, p 166–169

    Article  CAS  Google Scholar 

  44. J. Hidalgo and M.J. Santofimia, Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite, Metall. Mater. Trans. A, 2016, 47, p 5288–5301

    Article  CAS  Google Scholar 

  45. P. Hua, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Crystallography of Martensite in Friction-Stir-Welded 12Cr Heat-Resistant Steel, Metall. Mater. Trans. A, 2019, 50, p 3158–3163

    Article  CAS  Google Scholar 

  46. D.V. Shtansky, K. Nakai, and Y. Ohmori, Decomposition of Martensite by Discontinuous-Like Precipitation Reaction in an Fe-17Cr-0.5C Alloy, Acta mater., 2000, 48, p 969–983

    Article  CAS  Google Scholar 

  47. T.E. Mitchell, R.G. Castro, J.J. Petrovic, S.A. Maloy, O. Unal, and M.M. Chadwick, Dislocations, Twins, Grain Boundaries and Precipitates in MoSi2, Mater. Sci. Eng. A, 1992, 155, p 241–249

    Article  Google Scholar 

  48. P. Shanthraj and M.A. Zikry, The Effects of Microstructure and Morphology on Fracture Nucleation and Propagation in Martensitic Steel Alloys, Mech. Mater., 2013, 58, p 110–122

    Article  Google Scholar 

  49. A. Stormvinter, P. Hedström, and A. Borgenstam, A Transmission Electron Microscopy Study of Plate Martensite Formation in High-Carbon Low Alloy Steels, J. Mater. Sci. Technol., 2013, 29, p 373–379

    Article  CAS  Google Scholar 

  50. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, and C. Levaillant, The Effect of the Addition of Alloying Elements on Carbide Precipitation and Mechanical Properties in 5% Chromium Martensitic Steels, Acta Mater., 2007, 55, p 4877–4889

    Article  CAS  Google Scholar 

  51. T. Maki and C.M. Wayman, Substructure of Ausformed Martensite in Fe-Ni and Fe-Ni-C Alloys, Metall. Trans. A, 1976, 7, p 1511–1518

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (No. 51575416), 111 Project (B17034), Innovative Research Team Development Program of Ministry of Education of China (No. IRT_17R83), Science and Technology Support Program of Hubei Province (No. 2015BAA039), Wuhan Youth Science and Technology Plan (No. 2016070204010126), Independent Innovation Foundation of Wuhan University of Technology (2019IVA102) and The fellowship of China Postdoctoral Science Foundation (2020M672429) for the support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Hua, L., Han, X. et al. Effect of Heat Treatment Process on Microstructure and Crystallography of 20CrMnTiH Spur Bevel Gear. J. of Materi Eng and Perform 29, 6468–6483 (2020). https://doi.org/10.1007/s11665-020-05169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05169-y

Keywords

Navigation