Skip to main content
Log in

Achieving Superior Strength and Ductility Combination Through Cryorolling in 2219 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In aluminum 2219 alloy, a combination of ultra-fine grains and coarse grains was established through cryorolling. Formation of bimodal grain distribution was confirmed using electron backscattered diffraction analysis, transmission electron microscopy and x-ray diffraction analysis. Cryorolled samples showed a 3% increase in strength, with a 4% increase in ductility. An increase in dislocation density, reduced slip distance and bimodal grain structure were attributed to the strength–ductility combination. Dislocation annihilation rate and driving force for dislocation movement were also determined based on the temperature of deformation and dislocation density in rolled material. The unidirectional and cross-directional cryorolled samples resulted in a grain size ranging from 510 nm to 73 µm and 340 nm to 42 µm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The raw/processed data required to reproduce these findings cannot be shared at this time, but data will be made available on request.

References

  1. Y. Huang and T.G. Langdon, Advances in Ultrafine-Grained Materials, Mater. Today, 2013, 16(3), p 85–93. https://doi.org/10.1016/j.mattod.2013.03.004 (in English)

    Article  CAS  Google Scholar 

  2. H. Yu, A.K. Tieu, C. Lu, X. Liu, M. Liu, A. Godbole, C. Kong, and Q. Qin, A New Insight Into Ductile Fracture of Ultrafine-Grained Al-Mg Alloys, Sci. Rep., 2015, 5, p 9568. https://doi.org/10.1038/srep09568 (in English)

    Article  CAS  Google Scholar 

  3. E. Ma and J. Ding, Tailoring Structural Inhomogeneities in Metallic Glasses to Enable Tensile Ductility at Room Temperature, Mater. Today, 2016, 19(10), p 568–579. https://doi.org/10.1016/j.mattod.2016.04.001 (in English)

    Article  CAS  Google Scholar 

  4. O.V. Mishin, A. Godfrey, D. Juul Jensen, and N. Hansen, Recovery and Recrystallization in Commercial Purity Aluminum Cold Rolled to an Ultrahigh Strain, Acta Mater., 2013, 61(14), p 5354–5364. https://doi.org/10.1016/j.actamat.2013.05.024 (in English)

    Article  CAS  Google Scholar 

  5. E.M. Lauridsen, H.F. Poulsen, S.F. Nielsen, and D. Juul Jensen, Recrystallization Kinetics of Individual Bulk Grains in 90% Cold-Rolled Aluminium, Acta Mater., 2003, 51(15), p 4423–4435. https://doi.org/10.1016/s1359-6454(03)00278-7 (in English)

    Article  CAS  Google Scholar 

  6. B. Poorganji, P. Sepehrband, H. Jin, and S. Esmaeili, Effect of Cold Work and Non-isothermal Annealing on the Recrystallization Behavior and Texture Evolution of a Precipitation-Hardenable Aluminum Alloy, Scripta Mater., 2010, 63(12), p 1157–1160. https://doi.org/10.1016/j.scriptamat.2010.08.014 (in English)

    Article  CAS  Google Scholar 

  7. Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61(3), p 782–817. https://doi.org/10.1016/j.actamat.2012.10.038 (in English)

    Article  CAS  Google Scholar 

  8. I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson, Tensile Deformation of an Ultrafine-Grained Aluminium Alloy: Micro Shear Banding and Grain Boundary Sliding, Acta Mater., 2008, 56(10), p 2223–2230. https://doi.org/10.1016/j.actamat.2008.01.020 (in English)

    Article  CAS  Google Scholar 

  9. I. Sabirov, M.R. Barnett, Y. Estrin, and P.D. Hodgson, The Effect of Strain Rate on the Deformation Mechanisms and the Strain Rate Sensitivity of an Ultra-Fine-Grained Al Alloy, Scripta Mater., 2009, 61(2), p 181–184. https://doi.org/10.1016/j.scriptamat.2009.03.032 (in English)

    Article  CAS  Google Scholar 

  10. S. Malekjani, P.D. Hodgson, N.E. Stanford, and T.B. Hilditch, The Role of Shear Banding on the Fatigue Ductility of Ultrafine-Grained Aluminium, Scripta Mater., 2013, 68(5), p 269–272. https://doi.org/10.1016/j.scriptamat.2012.10.038 (in English)

    Article  CAS  Google Scholar 

  11. A. Deschamps, F. De Geuser, Z. Horita, S. Lee, and G. Renou, Precipitation Kinetics in a Severely Plastically Deformed 7075 Aluminium Alloy, Acta Mater., 2014, 66, p 105–117. https://doi.org/10.1016/j.actamat.2013.11.071 (in English)

    Article  CAS  Google Scholar 

  12. V. Subramanya Sarma, K. Sivaprasad, D. Sturm, and M. Heilmaier, Microstructure and Mechanical Properties of Ultra Fine Grained Cu-Zn and Cu-Al Alloys Produced by Cryorolling and Annealing, Mater. Sci. Eng., A, 2008, 489(1), p 253–258. https://doi.org/10.1016/j.msea.2007.12.016 (in English)

    Article  CAS  Google Scholar 

  13. Z. Xu, M. Liu, Z. Jia, and H.J. Roven, Effect of Cryorolling on Microstructure and Mechanical Properties of a Peak-Aged AA6082 Extrusion, J. Alloys Compd., 2017, 695, p 827–840. https://doi.org/10.1016/j.jallcom.2016.10.135 (in English)

    Article  CAS  Google Scholar 

  14. K. Chandra Sekhar and R. Narayanasamy, Mechanical Properties and Formability of Cryorolled Commercial Pure Aluminium at Various Reductions, Mater. Today Proc., 2018, 5(2), p 6888–6896. https://doi.org/10.1016/j.matpr.2017.11.350 (in English)

    Article  CAS  Google Scholar 

  15. D. Doppalapudi, P. Venkatachalam, S.R. Kumar, B. Ravisankar, and K. Jayashankar, Improving the Mechanical Properties of 2024 Al Alloy by Cryo Rolling, Trans. Indian Inst. Met., 2010, 63(1), p 31–34. https://doi.org/10.1007/s12666-010-0005-1 (in English)

    Article  CAS  Google Scholar 

  16. K.S.V.B.R. Krishna, S. Vigneshwaran, K.C. Sekhar, S.S.R. Akella, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Mechanical Behavior and Void Coalescence Analysis of Cryorolled AA8090 Alloy, Int. J. Adv. Manuf. Technol., 2016, 93(1–4), p 253–259. https://doi.org/10.1007/s00170-016-8863-2 (in English)

    Article  Google Scholar 

  17. D.K. Yang, P.D. Hodgson, and C.E. Wen, Simultaneously Enhanced Strength and Ductility of Titanium via Multimodal Grain Structure, Scripta Mater., 2010, 63(9), p 941–944. https://doi.org/10.1016/j.scriptamat.2010.07.010 (in English)

    Article  CAS  Google Scholar 

  18. B. Roy, R. Kumar, and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng., A, 2015, 631, p 241–247. https://doi.org/10.1016/j.msea.2015.02.050 (in English)

    Article  CAS  Google Scholar 

  19. A. Joshi, K.K. Yogesha, and R. Jayaganthan, Influence of Cryorolling and Followed by Annealing on High Cycle Fatigue BEHAVIOR of ultrafine Grained Al 2014 Alloy, Mater. Charact., 2017, 127, p 253–271. https://doi.org/10.1016/j.matchar.2017.02.003 (in English)

    Article  CAS  Google Scholar 

  20. T. Shanmugasundaram, B.S. Murty, and V. Subramanya Sarma, Development of ultrafine grained high strength Al–Cu alloy by cryorolling, Scripta Mater., 2006, 54(12), p 2013–2017. https://doi.org/10.1016/j.scriptamat.2006.03.012 (in English)

    Article  CAS  Google Scholar 

  21. S.K. Panigrahi and R. Jayaganthan, A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy, Mater. Sci. Eng., A, 2008, 480(1–2), p 299–305. https://doi.org/10.1016/j.msea.2007.07.024 (in English)

    Article  CAS  Google Scholar 

  22. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155. https://doi.org/10.1016/j.actamat.2013.09.042 (in English)

    Article  CAS  Google Scholar 

  23. T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, and E.J. Lavernia, Precipitation Phenomena in an Ultrafine-Grained Al Alloy, Acta Mater., 2013, 61(6), p 2163–2178. https://doi.org/10.1016/j.actamat.2012.12.037 (in English)

    Article  CAS  Google Scholar 

  24. Y. Xiong, T. He, H. Li, Y. Lu, F. Ren, and A.A. Volinsky, Annealing Effects on Microstructure and Mechanical Properties of Cryorolled Fe-25Cr-20Ni Steel, Mater. Sci. Eng., A, 2017, 703, p 68–75. https://doi.org/10.1016/j.msea.2017.07.056 (in English)

    Article  CAS  Google Scholar 

  25. K. Changela, H. Krishnaswamy, and R.K. Digavalli, Development of Combined Groove Pressing and Rolling to Produce Ultra-Fine Grained Al Alloys and Comparison with Cryorolling, Mater. Sci. Eng., A, 2019, 760, p 7–18. https://doi.org/10.1016/j.msea.2019.05.088 (in English)

    Article  CAS  Google Scholar 

  26. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: the FCC Case, Prog. Mater Sci., 2003, 48(3), p 171–273. https://doi.org/10.1016/S0079-6425(02)00003-8 (in English)

    Article  CAS  Google Scholar 

  27. L. Mei, X.P. Chen, G.J. Huang, and Q. Liu, Improvement of Mechanical Properties of a Cryorolled Al-Mg-Si Alloy Through Warm Rolling and Aging, J. Alloys Compd., 2019, 777, p 259–263. https://doi.org/10.1016/j.jallcom.2018.11.012 (in English)

    Article  CAS  Google Scholar 

  28. Y.M. Wang and E. Ma, Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal, Acta Mater., 2004, 52(6), p 1699–1709. https://doi.org/10.1016/j.actamat.2003.12.022 (in English)

    Article  CAS  Google Scholar 

  29. H. Yu, C. Lu, K. Tieu, X. Liu, Y. Sun, Q. Yu, and C. Kong, Asymmetric Cryorolling for Fabrication of Nanostructural Aluminum Sheets, Sci. Rep., 2012, 2, p 772. https://doi.org/10.1038/srep00772 (in English)

    Article  CAS  Google Scholar 

  30. K. Kamal Babu, K. Panneerselvam, P. Sathiya, A.N. Haq, S. Sundarrajan, P. Mastanaiah, and C.V. Srinivasa Murthy, Effects of Mechanical, Metallurgical and Corrosion Properties of Cryorolled AA2219-T87 Aluminium Alloy, Mater. Today Proc., 2017, 4, p 285–293. https://doi.org/10.1016/j.matpr.2017.01.023 (in English)

    Article  Google Scholar 

  31. S. Vigneshwaran, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Microstructure and Mechanical Properties of Al-3 Mg-0.25 Sc Alloy Sheets Produced by Cryorolling, Mater. Sci. Eng., A, 2019, 740–741, p 49–62. https://doi.org/10.1016/j.msea.2018.10.044 (in English)

    Article  CAS  Google Scholar 

  32. R. Jayaganthan, H.G. Brokmeier, B. Schwebke, and S.K. Panigrahi, Microstructure and Texture Evolution in Cryorolled Al 7075 Alloy, J. Alloys Compd., 2010, 496(1–2), p 183–188. https://doi.org/10.1016/j.jallcom.2010.02.111 (in English)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank ISRO-RESPOND for their financial support (ISRO Sanction No: ISRO/RES/3/721/16-17) and Prof. Indradev S. Samajdar, IIT-Bombay for providing EBSD facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Blessto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprasad, K., Blessto, B., Muthupandi, V. et al. Achieving Superior Strength and Ductility Combination Through Cryorolling in 2219 Aluminum Alloy. J. of Materi Eng and Perform 29, 6809–6817 (2020). https://doi.org/10.1007/s11665-020-05124-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05124-x

Keywords

Navigation