Skip to main content
Log in

Electrostrain Enhancement at Tricritical Point for BaTi1−xHfxO3 Ceramics

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The maximum electromechanical property of piezoelectric ceramic is normally achieved at morphotropic phase boundary. Herein, we found that a maximum electrostrain is obtained in single rhombohedral phase region at the tricritical point (which is a single rhombohedral phase at room temperature) for BaTi1−xHfxO3 ceramics. The mechanism for electrostrain enhancement at tricritical point (TTP) was uncovered by analyzing its crystallographic feature. The results show that TTP (x = 0.11) exhibits largest electrostrain (S = 0.063%) at room temperature. And the TTP reveals a maximum crystallite size (66.3 nm) and minimum lattice strain (0.7 × 10−4). Further Raman results demonstrate a lowest Raman intensity occurs at TTP, which confirmed the specific crystallographic behavior. Therefore, a minimum lattice strain-induced low elastic energy could lower landau free energy, which is responsible for electrostrain enhancement at TTP. This work may provide a new insight for understanding and designing large electromechanical ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Shibata, R. Wang, T. Tou, and J. Koruza, Applications of Lead-Free Piezoelectric Materials, MRS Bull., 2018, 43(8), p 612–616

    CAS  Google Scholar 

  2. L. Zhao, X. Ke, W. Wang, M. Fang, A. Xiao, L. He, L. Zhang, J. Gao, Y. Wang, and X. Ren, Mechanism of Electrostrain Enhancement in the Single Rhombohedral Phase Region of Ba(Ti1−xZrx)O3 Ceramics, J. Alloys Compd., 2019, 788, p 748–755

    CAS  Google Scholar 

  3. W. Liu and X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics, Phys. Rev. Lett., 2009, 103(25), p 257602

    Google Scholar 

  4. H. Liu, J. Chen, H. Huang, L. Fan, Y. Ren, Z. Pan, J. Deng, L.-Q. Chen, and X. Xing, Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary, Phys. Rev. Lett., 2018, 120(5), p 05550

    Google Scholar 

  5. L. Wu, A. Podpirka, J.E. Spanier, and P.K. Davies, Ferroelectric, Optical, and Photovoltaic Properties of Morphotropic Phase Boundary Compositions in the PbTiO3-BiFeO3-Bi(Ni1/2Ti1/2)O3 System, Chem. Mater., 2019, 31(11), p 4184–4194

    CAS  Google Scholar 

  6. X. Hu, J. Gao, Y. Wang, Y. Liu, L. Li, D. Wang, F. Li, R. Yao, L. Zhong, and X. Ren, Reversible Domain-Wall-Motion-Induced Low-Hysteretic Piezoelectric Response in Ferroelectrics, J. Phys. Chem. C, 2019, 123(25), p 15434–15440

    CAS  Google Scholar 

  7. A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, and N. Mathur, Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3, Science, 2006, 311(5765), p 1270–1271

    CAS  Google Scholar 

  8. J. Gao, X. Hu, L. Zhang, F. Li, L. Zhang, Y. Wang, Y. Hao, L. Zhong, and X. Ren, Major Contributor to the Large Piezoelectric Response in (1−x)Ba (Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 Ceramics: Domain Wall Motion, Appl. Phys. Lett., 2014, 104(25), p 252909

    Google Scholar 

  9. J. Gao, X. Hu, Y. Wang, Y. Liu, L. Zhang, X. Ke, L. Zhong, H. Zhao, and X. Ren, Understanding the Mechanism of Large Dielectric Response in Pb-Free (1 − x)Ba (Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 Ferroelectric Ceramics, Acta Mater., 2017, 125, p 177–186

    CAS  Google Scholar 

  10. J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, and X. Ren, Enhancing Dielectric Permittivity for Energy-Storage Devices Through Tricritical Phenomenon, Sci. Rep., 2017, 7, p 40916

    CAS  Google Scholar 

  11. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, and L.-Q. Chen, Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design, Nat. Mater., 2018, 17(4), p 349–354

    CAS  Google Scholar 

  12. L. Zhao, X. Ke, W. Wang, L. Zhang, C. Zhou, Z. Zhou, L. Zhang, and X. Ren, Electrostrain Enhancement at An Invisible Boundary in a Single Ferroelectric Phase, Phys. Rev. B, 2017, 95(2), p 020101

    Google Scholar 

  13. L.-F. Zhu, B.-P. Zhang, X.-K. Zhao, L. Zhao, F.-Z. Yao, X. Han, P.-F. Zhou, and J.-F. Li, Phase Transition and High Piezoelectricity in (Ba, Ca)(Ti1−xSnx)O3 Lead-Free Ceramics, Appl. Phys. Lett., 2013, 103(7), p 072905

    Google Scholar 

  14. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics, Phys. Rev. B, 2004, 70(2), p 024107

    Google Scholar 

  15. J. Li, D. Zhang, S. Qin, T. Li, M. Wu, D. Wang, Y. Bai, and X. Lou, Large Room-Temperature Electrocaloric Effect in Lead-Free BaHfxTi1−xO3 Ceramics Under Low Electric Field, Acta Mater., 2016, 115, p 58–67

    CAS  Google Scholar 

  16. D. Balzar, P. Ramakrishnan, and A. Hermann, Defect-Related Lattice Strain and the Transition Temperature in Ferroelectric Thin Films, Phys. Rev. B, 2004, 70(9), p 092103

    Google Scholar 

  17. W. Liu, D. Zhao, and S. Li, Large Electrostrain with Good Temperature Stability in Sodium Niobate Based Ceramics, RSC Adv., 2017, 7(5), p 2550–2554

    CAS  Google Scholar 

  18. M. Acosta, N. Khakpash, T. Someya, N. Novak, W. Jo, H. Nagata, G.A. Rossetti, and J. Rödel, Origin of the Large Piezoelectric Activity in (1 − x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 Ceramics, Phys. Rev. B, 2015, 91(10), p 104108

    Google Scholar 

  19. F. Ernst, A. Rečnik, P. Langjahr, P. Nellist, and M. Rühle, Atomistic Structure of Misfit Dislocations in SrZrO3/SrTiO3 Interfaces, Acta Mater., 1998, 47(1), p 183–198

    Google Scholar 

  20. Y. Feng, W.-L. Li, D. Xu, Y.-L. Qiao, Y. Yu, Y. Zhao, and W.-D. Fei, Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability, ACS Appl. Mater. Interfaces, 2016, 8(14), p 9231–9241

    CAS  Google Scholar 

  21. I. Misirlioglu, S. Alpay, M. Aindow, and V. Nagarajan, Thermodynamic and Electrostatic Analysis of Threading Dislocations in Epitaxial Ferroelectric Films, Appl. Phys. Lett., 2006, 88(10), p 102906

    Google Scholar 

  22. I. Vrejoiu, G. Le Rhun, N. Zakharov, D. Hesse, L. Pintilie, and M. Alexe, Threading Dislocations in Epitaxial Ferroelectric PbZr0.2Ti0.8O3 Films and Their Effect on Polarization Backswitching, Philos. Mag., 2006, 86(28), p 4477–4486

    CAS  Google Scholar 

  23. S.S. Rajput and S. Keshri, Structural and Microwave Properties of (Mg, Zn/Co)TiO3 Dielectric Ceramics, J. Mater. Eng. Perform., 2014, 23(6), p 2103–2109

    CAS  Google Scholar 

  24. F.A. Rabuffetti and R.L. Brutchey, Local Structure of Ba1−xSrxTiO3 and BaTi1−yZryO3 Nanocrystals Probed by x-ray Absorption and x-ray Total Scattering, ACS Nano, 2013, 7(12), p 11435–11444

    CAS  Google Scholar 

  25. J. Chen, C. Fu, W. Cai, G. Chen, and S. Ran, Microstructures, Dielectric and Ferroelectric Properties of BaHfxTi1−xO3 ceramics, J. Alloys Compd., 2012, 544, p 82–86

    CAS  Google Scholar 

  26. B. Garbarz-Glos, W. Bąk, A. Molak, and A. Kalvane, Microstructure, Calorimetric and Dielectric Investigation of Hafnium Doped Barium Titanate Ceramics, Phase Trans., 2013, 86(9), p 917–925

    CAS  Google Scholar 

  27. Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, and X. Ren, Large Piezoelectricity and Dielectric Permittivity in BaTiO3-xBaSnO3 System: The Role of Phase Coexisting, EPL (Europhys. Lett.), 2012, 98(2), p 27008

    Google Scholar 

  28. A.K. Kalyani, K. Brajesh, A. Senyshyn, and R. Ranjan, Orthorhombic-Tetragonal Phase Coexistence and Enhanced Piezo-Response at Room Temperature in Zr, Sn, and Hf Modified BaTiO3, Appl. Phys. Lett., 2014, 104(25), p 252906

    Google Scholar 

  29. J. Gao, Y. Dai, X. Hu, X. Ke, L. Zhong, S. Li, L. Zhang, Y. Wang, D. Wang, and Y. Wang, Phase Transition Behaviours Near the Triple Point for Pb-Free (1 − x)Ba (Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 Piezoceramics, EPL (Europhys. Lett.), 2016, 115(3), p 37001

    Google Scholar 

  30. Y. Yonggang, Z. Chao, L. Duchao, W. Dong, W. Haijun, Y. Yaodong, and R. Xiaobing, Large Piezoelectricity and Dielectric Permittivity in BaTiO3-xBaSnO3 System: The Role of Phase Coexisting, EPL (Europhys. Lett.), 2012, 98(2), p 27008

    Google Scholar 

  31. M. Acosta, N. Novak, W. Jo, and J. Rödel, Relationship Between Electromechanical Properties and Phase Diagram in the Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 Lead-Free Piezoceramic, Acta Mater., 2014, 80, p 48–55

    CAS  Google Scholar 

  32. D. Balzar, P.A. Ramakrishnan, and A.M. Hermann, Defect-Related Lattice Strain and the Transition Temperature in Ferroelectric Thin Films, Phys. Rev. B, 2014, 70(9), p 092103

    Google Scholar 

  33. A.L. Patterson, The Scherrer Formula for x-ray Particle Size Determination, Phys. Rev., 1939, 56(10), p 978–982

    CAS  Google Scholar 

  34. G. Williamson and W. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31

    CAS  Google Scholar 

  35. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, and R. Yousefi, X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size–Strain Plot Methods, Solid State Sci., 2011, 13(1), p 251–256

    CAS  Google Scholar 

  36. F. Desheng, I. Mitsuru, and K. Shin-ya, Invariant Lattice Strain and Polarization in BaTiO3-CaTiO3 Ferroelectric Alloys, J. Phys. Condens. Matter, 2010, 22(5), p 052204

    Google Scholar 

  37. H. Fu and R.E. Cohen, Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics, Nature, 2000, 403(6767), p 281

    CAS  Google Scholar 

  38. B. Vincenzo, T. Saurabh, P. Valeri, D. Monica, D. Marco, G. Andreja, and R. Yang, Average and Local Atomic-Scale Structure in BaZrxTi1−xO3 (x = 0.10, 0.20, 0.40) Ceramics by High-Energy x-ray Diffraction and Raman Spectroscopy, J. Phys. Condens. Matter, 2014, 26(6), p 065901

    Google Scholar 

  39. Y.-I. Kim, J.K. Jung, and K.-S. Ryu, Structural Study of Nano BaTiO3 Powder by Rietveld Refinement, Mater. Res. Bull., 2004, 39(7), p 1045–1053

    CAS  Google Scholar 

  40. R. Farhi, M. El Marssi, A. Simon, and J. Ravez, A Raman and Dielectric Study of Ferroelectric Ceramics, Eur. Phys. J. B Condens. Matter Complex Syst., 1999, 9(4), p 599–604

    CAS  Google Scholar 

  41. M.-K. Zhu, P.-X. Lu, Y.-D. Hou, X.-M. Song, H. Wang, and H. Yan, Analysis of Phase Coexistence in Fe2O3-Doped 0.2PZN–0.8PZT Ferroelectric Ceramics by Raman Scattering Spectra, J. Am. Ceram. Soc., 2006, 89(12), p 3739–3744

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Dr. Y. Matsushita, Research Network and Facility Services Division, National Institute for Materials Science (NIMS), Japan, for providing the XRD facility. Authors are also grateful to all MMRC members for helpful discussions. Shailendra Rajput is thankful to Israeli Council for Higher Education (CHE) for fellowship. Authors thank Yongbin Liu for SEM facility. Financial support from the program of China Scholarships Council, Natural Science Foundation of China (Grant No. 51471127) and Research Foundation for Advanced Talents (Grant. 5501110013) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghao Hu or Xiaobing Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Rajput, S., Parida, S. et al. Electrostrain Enhancement at Tricritical Point for BaTi1−xHfxO3 Ceramics. J. of Materi Eng and Perform 29, 5388–5394 (2020). https://doi.org/10.1007/s11665-020-05003-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05003-5

Keywords

Navigation