Skip to main content

Advertisement

Log in

Numerical Prediction on the Crashworthiness of Circular and Square Thin-Walled Tubes with Polymeric Auxetic Foam Core

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This present research numerically investigates the energy absorption capability of auxetic foam-filled tubes when loaded statically. Accordingly, numerical simulations were performed to quantify the influence of tubes’ parameters such as wall thickness, diameter and width on the energy absorption responses and deformation modes of auxetic foam-filled circular and square tubes using validated FE models. The results reveal that the progressive collapse and deformation mode of auxetic foam-filled circular tube are pronouncedly affected by varying the tube width, so that the number of lobes created decreases as the tube width increases. Moreover, it was found that the absorbed energy by auxetic foam-filled square tube shows more dependence on the tube wall thickness variations than on the tube width. Nonetheless, increasing the width of filled tube makes the structure heavier without considerably affecting the absorbed energy, which is undesirable in design of energy absorbing structures. The primary outcome of this research is a design guideline for the use of auxetic foam as a core for an energy absorber device where impact loading is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. W. Abramowicz and N. Jones, Dynamic Axial Crushing of Square Tubes, Int. J. Impact Eng., 1984, 2(2), p 179–208

    Article  Google Scholar 

  2. M. Langseth, O. Hopperstad, and A. Hanssen, Crash Behaviour of Thin-Walled Aluminium Members, Thin-Walled Struct., 1998, 32(1–3), p 127–150

    Article  Google Scholar 

  3. S.P. Santosa, T. Wierzbicki, A.G. Hanssen, and M. Langseth, Experimental and Numerical Studies of Foam-Filled Sections, Int. J. Impact Eng., 2000, 24(5), p 509–534

    Article  Google Scholar 

  4. Q. Wang, Z. Fan, H. Song, and L. Gui, Experimental and Numerical Analyses of the Axial Crushing Behaviour of Hat Sections Partially Filled with Aluminium Foam, Int. J. Crashworthiness, 2005, 10(5), p 535–543

    Article  Google Scholar 

  5. S. Mohsenizadeh, R. Alipour, Z. Ahmad, and A. Alias, Influence of Auxetic Foam in Quasi-static AXIAL Crushing, Int. J. Mater. Res., 2016, 107(10), p 916–924

    Article  CAS  Google Scholar 

  6. S. Mohsenizadeh, R. Alipour, A.F. Nejad, M.S. Rad, and Z. Ahmad, Experimental Investigation on Energy Absorption of Auxetic Foam-Filled Thin-Walled Square Tubes Under Quasi-static Loading, Procedia Manuf., 2015, 2, p 331–336

    Article  Google Scholar 

  7. J. Bai, G. Meng, H. Wu, and W. Zuo, Bending Collapse of Dual Rectangle Thin-Walled Tubes for Conceptual Design, Thin-Walled Struct., 2019, 135, p 185–195

    Article  Google Scholar 

  8. S. Reid, Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers, Int. J. Mech. Sci., 1993, 35(12), p 1035–1052

    Article  Google Scholar 

  9. L. Aktay, A.K. Toksoy, and M. Güden, Quasi-static Axial Crushing of Extruded Polystyrene Foam-Filled Thin-Walled Aluminum Tubes: Experimental and Numerical Analysis, Mater. Des., 2006, 27(7), p 556–565

    Article  CAS  Google Scholar 

  10. R.D. Hussein, D. Ruan, G. Lu, S. Guillow, and J.W. Yoon, Crushing Response of Square Aluminium Tubes Filled with Polyurethane Foam and Aluminium Honeycomb, Thin-Walled Struct., 2017, 110, p 140–154

    Article  Google Scholar 

  11. R.D. Hussein, D. Ruan, G. Lu, and I. Sbarski, Axial Crushing Behaviour of Honeycomb-Filled Square Carbon Fibre Reinforced Plastic (CFRP) Tubes, Compos. Struct., 2016, 140, p 166–179

    Article  Google Scholar 

  12. H. Yin, G. Wen, S. Hou, and K. Chen, Crushing Analysis and Multiobjective Crashworthiness Optimization of Honeycomb-Filled Single and Bitubular Polygonal Tubes, Mater. Des., 2011, 32(8–9), p 4449–4460

    Article  Google Scholar 

  13. N. Gan, Y. Feng, H. Yin, G. Wen, D. Wang, and X. Huang, Quasi-static Axial Crushing Experiment Study of Foam-Filled CFRP and Aluminum Alloy Thin-Walled Structures, Compos. Struct., 2016, 157, p 303–319

    Article  Google Scholar 

  14. J. Paz, J. Díaz, L. Romera, and M. Costas, Crushing Analysis and Multi-objective Crashworthiness Optimization of GFRP Honeycomb-Filled Energy Absorption Devices, Finite Elem. Anal. Des., 2014, 91, p 30–39

    Article  Google Scholar 

  15. G. Balaji and K. Annamalai, Crushing Response of Square Aluminium Column Filled with Carbon Fibre Tubes and Aluminium Honeycomb, Thin-Walled Struct., 2018, 132, p 667–681

    Article  Google Scholar 

  16. Z. Fan, G. Lu, and K. Liu, Quasi-static Axial Compression of Thin-Walled Tubes with Different Cross-Sectional Shapes, Eng. Struct., 2013, 55, p 80–89

    Article  Google Scholar 

  17. A.A. Nia and M. Parsapour, Comparative Analysis of Energy Absorption Capacity of SIMPLE and Multi-cell Thin-Walled Tubes with Triangular, Square, Hexagonal and Octagonal Sections, Thin-Walled Struct., 2014, 74, p 155–165

    Article  Google Scholar 

  18. W. Liu, Z. Lin, N. Wang, and X. Deng, Dynamic Performances of Thin-Walled Tubes with Star-Shaped Cross Section Under Axial Impact, Thin-Walled Struct., 2016, 100, p 25–37

    Article  Google Scholar 

  19. Z. Fan, G. Lu, T. Yu, and K. Liu, Axial Crushing of Triangular Tubes, Int. J. Appl. Mech., 2013, 5(01), p 1350008

    Article  Google Scholar 

  20. Q. Gao, L. Wang, Y. Wang, and C. Wang, Crushing Analysis and Multiobjective Crashworthiness Optimization of Foam-Filled Ellipse Tubes Under Oblique Impact Loading, Thin-Walled Struct., 2016, 100, p 105–112

    Article  Google Scholar 

  21. G. Sun, S. Li, Q. Liu, G. Li, and Q. Li, Experimental Study on Crashworthiness of Empty/Aluminum Foam/Honeycomb-Filled CFRP Tubes, Compos. Struct., 2016, 152, p 969–993

    Article  Google Scholar 

  22. C. Ge, Q. Gao, L. Wang, and Z. Hong, Theoretical Prediction and Numerical Analysis for Axial Crushing Behaviour of Elliptical Aluminium Foam-Filled Tube. Thin-Walled Struct., 2019, 149, p 106523

    Article  Google Scholar 

  23. S. Shahbeyk, A. Vafai, and N. Petrinic, Axial Crushing of Metal Foam-Filled Square Columns: Foam Density Distribution and Impactor Inclination Effects, Thin-Walled Struct., 2005, 43(12), p 1818–1830

    Article  Google Scholar 

  24. T. Reddy and S. Al-Hassani, Axial Crushing of Wood-Filled Square Metal Tubes, Int. J. Mech. Sci., 1993, 35(3-4), p 231–246

    Article  Google Scholar 

  25. C. Gameiro and J. Cirne, Dynamic Axial Crushing of Short to Long Circular Aluminium Tubes with Agglomerate Cork Filler, Int. J. Mech. Sci., 2007, 49(9), p 1029–1037

    Article  Google Scholar 

  26. A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng., 2000, 24(5), p 475–507

    Article  Google Scholar 

  27. D. Tankara, R. Moradi, Y.Y. Tay, and H.M. Lankarani, Energy absorption characteristics of a thin-walled tube filled with carbon nano polyurethane foam and application in car bumper. In: ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2014, p V012T15A029-V012T15A029

  28. A.K. Toksoy and M. Güden, The Strengthening Effect of Polystyrene Foam Filling in Aluminum Thin-Walled Cylindrical Tubes, Thin-Walled Struct., 2005, 43(2), p 333–350

    Article  Google Scholar 

  29. T. Reddy and R. Wall, Axial Compression of Foam-Filled Thin-Walled Circular Tubes, Int. J. Impact Eng., 1988, 7(2), p 151–166

    Article  Google Scholar 

  30. T. Børvik, O.S. Hopperstad, A. Reyes, M. Langseth, G. Solomos, and T. Dyngeland, Empty and Foam-Filled Circular Aluminium Tubes Subjected to Axial and Oblique Quasistatic Loading, Int. J. Crashworthiness, 2003, 8(5), p 481–494

    Article  Google Scholar 

  31. L. Yan, N. Chouw, and K. Jayaraman, Effect of Triggering and Polyurethane Foam-Filler on Axial Crushing of Natural Flax/Epoxy Composite Tubes, Mater. Des., 2014, 56, p 528–541

    Article  CAS  Google Scholar 

  32. M. Seitzberger, F.G. Rammerstorfer, R. Gradinger, H. Degischer, M. Blaimschein, and C. Walch, Experimental Studies on the Quasi-static Axial Crushing of Steel Columns Filled with Aluminium Foam, Int. J. Solids Struct., 2000, 37(30), p 4125–4147

    Article  Google Scholar 

  33. G. Lu and T. Yu, Energy Absorption of Structures and Materials, Elsevier, Amsterdam, 2003

    Book  Google Scholar 

  34. R. Lakes, Foam Structures with a Negative Poisson’s Ratio, Science, 1987, 235, p 1038–1041

    Article  CAS  Google Scholar 

  35. F. Najarian, R. Alipour, M.S. Rad, A.F. Nejad, and A. Razavykia, Multi-objective Optimization of Converting Process of Auxetic Foam Using Three Different Statistical Methods, Measurement, 2018, 119, p 108–116

    Article  Google Scholar 

  36. Y. Prawoto, Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio, Comput. Mater. Sci., 2012, 58, p 140–153

    Article  CAS  Google Scholar 

  37. M. Bianchi, F.L. Scarpa, and C.W. Smith, Stiffness and Energy Dissipation in Polyurethane Auxetic Foams, J. Mater. Sci., 2008, 43(17), p 5851–5860

    Article  CAS  Google Scholar 

  38. J. Choi and R. Lakes, Non-linear Properties of Polymer Cellular Materials with a Negative Poisson’s Ratio, J. Mater. Sci., 1992, 27(17), p 4678–4684

    Article  CAS  Google Scholar 

  39. R. Lakes, Design Considerations for Materials with Negative Poisson’s Ratios, J. Mech. Des., 1993, 115(4), p 696–700

    Article  Google Scholar 

  40. S. Hou, T. Liu, Z. Zhang, X. Han, and Q. Li, How Does Negative Poisson’s Ratio of Foam Filler Affect Crashworthiness?, Mater. Des., 2015, 82, p 247–259

    Article  Google Scholar 

  41. S. Mohsenizadeh, R. Alipour, M.S. Rad, A.F. Nejad, and Z. Ahmad, Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-static Axial Loading, Mater. Des., 2015, 88, p 258–268

    Article  Google Scholar 

  42. S. Mohsenizadeh and Z. Ahmad, Auxeticity Effect on Crushing Characteristics of Auxetic Foam-Filled Square Tubes Under Axial Loading, Thin-Walled Struct., 2019, 145, p 106379

    Article  Google Scholar 

  43. A.A.S.f. Testing, Materials, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2009

    Google Scholar 

  44. S. Mohsenizadeh, Z. Ahmad, R. Alipour, R.A. Majid, and Y. Prawoto, Quasi Tri-axial Method for the Fabrication of Optimized Polyurethane Auxetic Foams, Phys. Status Solidi (b), 2019, 256(10), p 1800587

    Article  CAS  Google Scholar 

  45. D. ASTM, 3574—Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams, 2001

  46. J. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, Livermore, 2006

    Google Scholar 

  47. H.E. Boyer, Atlas of Stress-Strain Curves, Metals Park, ASM International, 1987, p 630

    Google Scholar 

  48. Z. Zhang, S. Liu, and Z. Tang, Comparisons of Honeycomb Sandwich and Foam-Filled Cylindrical Columns Under Axial Crushing Loads, Thin-Walled Struct., 2011, 49(9), p 1071–1079

    Article  Google Scholar 

  49. Q.H. Shah and A. Topa, Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA, Model. Simul. Eng., 2014, 2014, p 1

    Article  Google Scholar 

  50. D. Zangani, M. Robinson, and A. Gibson, Progressive Failure of Composite Hollow Sections with Foam-Filled Corrugated Sandwich Walls, Appl. Compos. Mater., 2007, 14(5–6), p 325–342

    Article  Google Scholar 

  51. J.O. Hallquist, LS-DYNA® Keyword User’s Manual Volume II Material Models, Livermore, California, USA, 2013

  52. Z. Ahmad and D. Thambiratnam, Crushing Response of Foam-Filled Conical Tubes Under Quasi-static Axial Loading, Mater. Des., 2009, 30(7), p 2393–2403

    Article  CAS  Google Scholar 

  53. V. Tarigopula, M. Langseth, O.S. Hopperstad, and A.H. Clausen, Axial Crushing of Thin-Walled High-Strength Steel Sections, Int. J. Impact Eng., 2006, 32(5), p 847–882

    Article  Google Scholar 

  54. J. Reid and N. Hiser, Friction Modelling Between Solid Elements, Int. J. Crashworthiness, 2004, 9(1), p 65–72

    Article  Google Scholar 

  55. J.O. Hallquist, LS-DYNA Keyword User’s Manual, Vol 970, Livermore Software Technology Corporation, Livermore, 2007, p 299–800

    Google Scholar 

  56. M. Barsotti, Comparison of FEM and SPH for Modeling a Crushable Foam Aircraft Arrestor Bed. Aerosp. J., 2012, 2, p 16–37

    Google Scholar 

  57. S. Guillow, G. Lu, and R. Grzebieta, Quasi-static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci., 2001, 43(9), p 2103–2123

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by the Ministry of Higher Education (MOHE) Malaysia under Fundamental Research Grant Scheme (FRGS) Vote No. R.J130000.7851.5F200 and Research University Grant (UTMFR) Vote No. Q.J130000.2551.20H67. Sincere appreciation and acknowledgement also go to Universiti Teknologi Malaysia (UTM) for the continuous support in completing this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenizadeh, S., Ahmad, Z. & Alias, A. Numerical Prediction on the Crashworthiness of Circular and Square Thin-Walled Tubes with Polymeric Auxetic Foam Core. J. of Materi Eng and Perform 29, 3092–3106 (2020). https://doi.org/10.1007/s11665-020-04852-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04852-4

Keywords

Navigation