Skip to main content
Log in

Investigations on the Creep Behavior of Friction-Stir-Processed Magnesium Alloy AE42

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnesium alloy AE42 is a candidate material for high-temperature applications. However, as-cast AE42 alloy exhibits poor high-temperature creep properties because of the microstructure that shows a continuous network of β-Mg17Al12 and Al-RE precipitates along the boundaries of coarse α-Mg grains. In the current work, friction stir processing technique was adopted to refine the coarse as-cast structure of the AE42 alloy and break up the continuous network of β-Mg17Al12 and Al-RE precipitates. The creep properties of the parent material and friction-stir-processed specimens were determined by impression creep test at 150, 175, 200, 225 and 250 °C. The results demonstrated that the presence of fragmented precipitates and the elimination of continuous network structure improved the creep resistance of the AE42 alloy. The metallurgical analysis revealed that no new precipitates were formed after friction stir processing and creep testing. From the data, it can be concluded that friction stir processing of AE42 alloy can lead to an increase in service temperatures from 150 to 225 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Patel, D. Chen, S. Bhole, and K. Sadayappan, Microstructure and Tensile Properties of Thixomolded Magnesium Alloys, J. Alloy. Compd., 2010, 496(1-2), p 140-148

    Article  CAS  Google Scholar 

  2. A.A. Luo, Recent Magnesium Alloy Development for Automotive Powertrain Applications, Mater. Sci. Forum, 2003, 419, p 57-66

    Article  Google Scholar 

  3. A. Kielbus and T. Rzychon, Mechanical and Creep Properties of Mg-4Y-3RE and Mg-3Nd-1Gd Magnesium Alloy, Procedia Eng., 2011, 10, p 1835-1840

    Article  CAS  Google Scholar 

  4. A. Kiełbus and T. Rzychoń, Microstructure and Creep Properties of AJ62 and AE44 Die-Casting Magnesium Alloys, Mater. Sci. Forum, 2010, 638, p 1546-1551

    Article  CAS  Google Scholar 

  5. T. Rzychoñ and A. Kielbus, The Influence of Pouring Temperature on the Microstructure and Fluidity Of Ae42 Alloy, Archiv. Mater. Sci. Eng., 2007, 28(10), p 601-604

    Google Scholar 

  6. T. Rzychoń, A. Kiełbus, J. Cwajna, and J. Mizera, Microstructural Stability and Creep Properties of Die Casting Mg-4Al-4RE Magnesium Alloy, Mater. Charact., 2009, 60(10), p 1107-1113

    Article  CAS  Google Scholar 

  7. H. Deming, C. Yungui, T. Yongbai, L. Hongmei, and N. Gao, Indentation Creep Behavior of AE42 and Ca-Containing AE41 Alloys, Mater. Lett., 2007, 61(4-5), p 1015-1019

    Article  CAS  Google Scholar 

  8. Z. Yang, J. Li, J. Zhang, G. Lorimer, and J. Robson, Review on Research and Development of Magnesium Alloys, Acta Metall. Sin., 2008, 5(21), p 313-328

    Article  Google Scholar 

  9. A. P. Druschitz, E. R. Showalter, J. B. McNeill, and D. L. White, Evaluation of Structural and High-Temperature Magnesium Alloys. SAE Technical Paper, pp. 0148-7191, 2002.

  10. Y. Huang, H. Dieringa, N. Hort, P. Maier, K. Kainer, and Y.-L. Liu, Evolution of Microstructure and Hardness of AE42 Alloy After Heat Treatments, J. Alloy. Compd., 2008, 463(1-2), p 238-245

    Article  CAS  Google Scholar 

  11. M. O. Pekguleryuz and E. Baril, Development of Creep Resistant Mg-Al-Sr Alloys. in Essential readings in magnesium technology. (Springer, 2016), pp. 283-289.

  12. M.O. Pekguleryuz and A.A. Kaya, Creep Resistant Magnesium Alloys for Powertrain Applications, Adv. Eng. Mater., 2003, 5(12), p 866-878

    Article  CAS  Google Scholar 

  13. B.R. Powell, V. Rezhets, M.P. Balogh, and R.A. Waldo, Microstructure and Creep Behavior in AE42 Magnesium Die-Casting Alloy, JOM, 2002, 54(8), p 34-38

    Article  CAS  Google Scholar 

  14. B. R. Powell, V. Rezhets, M. P. Balogh, and R. A. Waldo, The Relationship Between Microstructure and Creep Behavior in AE42 Magnesium Die Casting Alloy. in Essential readings in magnesium technology, (Springer, 2016), pp. 275-281.

  15. S. Zhu, J.-F. Nie, M. Gibson, M. Easton, and P. Bakke, Microstructure and Creep Behavior Of High-Pressure Die-Cast Magnesium Alloy AE44, Metall. Mater. Trans. A, 2012, 43(11), p 4137-4144

    Article  CAS  Google Scholar 

  16. I. Moreno, T. Nandy, J. Jones, J. Allison, and T. Pollock, Microstructural Stability and Creep of Rare-Earth Containing Magnesium Alloys, Scripta Mater., 2003, 48(8), p 1029-1034

    Article  CAS  Google Scholar 

  17. T. Chen, Z. Zhu, Y. Ma, Y. Li, and Y. Hao, Friction Stir Processing of Thixoformed AZ91D Magnesium Alloy and Fabrication of Surface Composite Reinforced by SiC p s, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2010, 25(2), p 223-227

    Article  CAS  Google Scholar 

  18. K. Xia, J. Wang, X. Wu, G. Chen, and M. Gurvan, Equal channel angular pressing of magnesium alloy AZ31, Mater. Sci. Eng., A, 2005, 410, p 324-327

    Article  CAS  Google Scholar 

  19. T.C. Lowe and R.Z. Valiev, Investigations and Applications of Severe Plastic Deformation, Springer, Berlin, 2002

    Google Scholar 

  20. Y. Zhang et al., Dynamic Precipitation, Segregation and Strengthening of an Al-Zn-Mg-Cu alloy (AA7075) Processed by High-Pressure Torsion, Acta Mater., 2019, 162, p 19-32

    Article  CAS  Google Scholar 

  21. I. P. Semenova, R. Z. Valiev, and T. G. Langdon, High-Pressure Torsion and Equal-Channel Angular Pressing. in Nanocrystalline Titanium, (Elsevier, 2019), pp. 3-19.

  22. R. Valiev, Producing Bulk Nanostructured Metals and Alloys by Severe Plastic Deformation (SPD). in Nanostructured Metals and Alloys, (Elsevier, 2011), pp. 3-39.

  23. D.J. Savage, I.J. Beyerlein, N.A. Mara, S.C. Vogel, R.J. McCabe, and M. Knezevic, Microstructure and Texture Evolution in Mg/Nb Layered Materials Made by Accumulative Roll Bonding, Int. J. Plast., 2020, 125, p 1-26

    Article  CAS  Google Scholar 

  24. X. Luo et al., Microstructural Evolution in Mg-3Gd During Accumulative Roll-Bonding, Mater. Sci. Eng. A, 2020, 772, p 138763

    Article  CAS  Google Scholar 

  25. X. Rao et al., Influence of Rolling Temperature on Microstructural Evolution and Mechanical Behavior of AZ31 Alloy with Accumulative Roll Bonding, Mater. Sci. Eng. A, 2019, 754, p 112-120

    Article  CAS  Google Scholar 

  26. R.V. Vignesh and R. Padmanaban, Forecasting Tribological Properties of Wrought AZ91D Magnesium Alloy Using Soft Computing Model, Russian J. Non-Ferrous Metals, 2018, 59(2), p 135-141

    Article  Google Scholar 

  27. M. Paidar, R. V. Vignesh, A. Khorram, O. O. Ojo, A. Rasoulpouraghdam, and I. Pustokhina, Dissimilar Modified Friction Stir Clinching of AA2024-AA6061 Aluminum Alloys: Effects of Materials Positioning, J. Mater. Res. Technol. 2020. https://doi.org/10.1016/j.jmrt.2020.04.007

    Article  Google Scholar 

  28. R. Padmanaban, V. Balusamy, and R. Vaira Vignesh, Effect of friction stir welding process parameters on the tensile strength of dissimilar aluminum alloy AA2024-T3, AA7075-T6 joints, Materialwissenschaft und Werkstofftechnik, 2020, 51(1), p 17-27

    Article  Google Scholar 

  29. M. Govindaraju, R.V. Vignesh, and R. Padmanaban, Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Friction Stir Processed AZ91D Magnesium Alloy, Met. Sci. Heat Treat., 2019, 61(5-6), p 311-317

    Article  CAS  Google Scholar 

  30. R. V. Vignesh and R. Padmanaban, Modelling of Peak Temperature During Friction Stir Processing of Magnesium Alloy AZ91. in IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2018, vol. 310, no. 1), p. 012019.

  31. R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50(1-2), p 1-78

    Article  CAS  Google Scholar 

  32. V.V. Ramalingam and P. Ramasamy, Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function, Trans. Indian Institute Metals J. Article, 2017, 70(10), p 2575-2589

    Article  CAS  Google Scholar 

  33. R. Vaira Vignesh, R. Padmanaban, and M. Datta, Influence of FSP on the Microstructure, Microhardness, Intergranular Corrosion Susceptibility and Wear Resistance of AA5083 Alloy, Tribol. Mater. Surf. Interfaces, 2018, 12(3), p 157-169. https://doi.org/10.1080/17515831.2018.1483295

    Article  Google Scholar 

  34. R.V. Vignesh and R. Padmanaban, Influence of Friction Stir Processing Parameters on the Wear Resistance of Aluminium Alloy AA5083, Mater. Today Proceed., 2018, 5(2), p 7437-7446

    Article  CAS  Google Scholar 

  35. M. Govindaraju, K.R. Prasad, U. Chakkingal, and K. Balasubramanian, Effect of Distance between Passes in Friction Stir Processing of Magnesium Alloy, Adv. Mater. Res., 2012, 585, p 397-401

    Article  CAS  Google Scholar 

  36. M. Govindaraju, K.P. Rao, C. Uday, K. Balasubramanian, and C. Ravindran, Friction Stir Processed Rare Earth Containing Magnesium Alloy for High Temperature Application, Mater. Sci. Forum., 2012, 710, p 235-240

    Article  CAS  Google Scholar 

  37. R. Dobriyal, B. Dhindaw, S. Muthukumaran, and S. Mukherjee, Microstructure and Properties of Friction Stir Butt-Welded AE42 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 477(1-2), p 243-249

    Article  CAS  Google Scholar 

  38. H. Arora, H. Singh, and B. Dhindaw, Parametric Study of Friction Stir Processing of Magnesium-Based AE42 Alloy, J. Mater. Eng. Perform., 2012, 21(11), p 2328-2339

    Article  CAS  Google Scholar 

  39. H. Arora, H. Singh, and B. Dhindaw, Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing, Wear, 2013, 303(1-2), p 65-77

    Article  CAS  Google Scholar 

  40. H.S. Arora et al., Microstructure-P roperty Relationship for Friction Stir Processed Magnesium Alloy, Adv. Eng. Mater., 2014, 16(1), p 94-102

    Article  CAS  Google Scholar 

  41. H.S. Arora, H. Singh, and B. Dhindaw, Some Observations On Microstructural Changes In A Mg-Based AE42 Alloy Subjected to Friction Stir Processing, Metall. Mater. Trans. B, 2012, 43(1), p 92-108

    Article  CAS  Google Scholar 

  42. G. Argade, N. Kumar, and R. Mishra, Stress Corrosion Cracking Susceptibility of Ultrafine Grained Al-Mg-Sc Alloy, Mater. Sci. Eng. A, 2013, 565, p 80-89

    Article  CAS  Google Scholar 

  43. M. Avedesian, Magnesium and Magnesium Alloys (Asm Specialty Handbook)(Asm Specialty Handbook), ASM International, 1999.

  44. P. Nagaraju, Studies on the High Temperature Stability of Scandium Containing Al-Cu Alloys. Ph.D. dissertation, IIT Madras, Chennai, 2006.

  45. T.E. Mitchell, J. Hirth, and A. Misra, Apparent Activation Energy and Stress Exponent in Materials with a High Peierls Stress, Acta Mater., 2002, 50(5), p 1087-1093

    Article  CAS  Google Scholar 

  46. V. Sklenička, M. Pahutova, K. Kuchařová, M. Svoboda, and T. Langdon, Creep Processes in Magnesium Alloys and Their Composites, Metall. Mater. Trans. A, 2002, 33(13), p 883-889

    Article  Google Scholar 

  47. B. Jing, S. Yangshan, X. Shan, X. Feng, and Z. Tianbai, Microstructure and Tensile Creep Behavior of Mg-4Al Based Magnesium Alloys with Alkaline-Earth Elements Sr and Ca Additions, Mater. Sci. Eng. A, 2006, 419(1-2), p 181-188

    Article  CAS  Google Scholar 

  48. A.A. Luo and B.R. Powell, Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys, Magnesium Technol., 2001, 2001, p 137-144

    Google Scholar 

  49. Y. Terada, Y. Mori, and T. Sato, Role of Eutectic Intermetallic Phase on Creep Strength in a Die-Cast Mg-Al-Ca Alloy: Evaluation by Internal Stress Measurement, Mater. Trans., 2007, 48(2), p 97-100

    Article  CAS  Google Scholar 

  50. H. Dieringa et al., Compression-Creep Response of Magnesium Alloy DieMag422 Containing Barium Compared with the Commercial Creep-Resistant Alloys AE42 and MRI230D, Mater. Sci. Eng. A, 2013, 585, p 430-438

    Article  CAS  Google Scholar 

  51. M. Dargusch, G. Dunlop, K. Pettersen, B. Mordike, and K. Kainer. Magnesium Alloys and Their Applications. Proceedings Volume sponsored by Volkswagen AG, BL Mordike and KU Kainer, Eds., Werkstoff-Informationsgesellschaft, (Frankfurt, Germany, 1998), pp. 277-282.

  52. J. Majimel, M.-J. Casanove, and G. Molénat, A 2xxx Aluminum Alloy Crept at Medium Temperature: Role of Thermal Activation on Dislocation Mechanisms, Mater. Sci. Eng. A, 2004, 380(1-2), p 110-116

    Article  CAS  Google Scholar 

  53. C. Wörner, A. Olguin, M. Ortiz, O. Herrera, J. Flores, and H. Calisto, Final Cell Distribution in a Zener Pinned Structure, Acta Mater., 2003, 51(20), p 6263-6267

    Article  CAS  Google Scholar 

  54. M. Govindaraju, K.R. Prasad, U. Chakkingal, K. Balasubramanian, and R. Ravindran, Friction Stir Processing to Increase the Application Temperature of Rare Earth Magnesium Alloy AE42, Adv. Mater. Res., 2013, 622-623, p 515-519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Non-Ferrous Technology Development Center, Hyderabad and Indian Institute of Technology Madras, Chennai, for providing facilities to perform microstructural analysis, creep test and access to x-ray diffractometer, transmission electron microscope, scanning electron microscope and energy-dispersive x-ray spectroscopy analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Govindaraju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindaraju, M., Chakkingal, U., Kalvala, P.R. et al. Investigations on the Creep Behavior of Friction-Stir-Processed Magnesium Alloy AE42. J. of Materi Eng and Perform 29, 3172–3182 (2020). https://doi.org/10.1007/s11665-020-04848-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04848-0

Keywords

Navigation