Skip to main content
Log in

Correlation Between Microstructure and High-Temperature Oxidation Resistance of Jet-Electrodeposited Ni-Based Alloy Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, Ni-based alloy coatings were prepared on copper substrates by jet electrodeposition, and their oxidation resistance was evaluated by isothermal oxidation resistance tests at 700, 800, and 900 °C, respectively. The oxidation kinetics of the jet-electrodeposited alloy coatings follow the parabolic rate law. The oxidation resistance of Ni and NiFe coatings is superior to that of jet-electrodeposited NiW coating, while the deposited ternary NiFeW alloy coatings exhibited the highest oxidation resistance. The enhanced high-temperature oxidation resistance could be mainly attributed to the excellent thermal stability of Fe2O3 and NiO phases formed in the alloy coatings during oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Wang, C. Zeng, Y.H. Ling, J.J. Wang, and G.Y. Xu, Phase Transformations and Electrochemical Characterizations of Electrodeposited Amorphous FeW Coatings, Surf. Coat. Technol., 2016, 286, p p36–p41

    Google Scholar 

  2. X.L. Ji, C.Y. Yan, H. Duan, and C.Y. Luo, Effect of Phosphorous Content on the Microstructure and Erosion–Corrosion Resistance of Electrodeposited NiCoFeP Coatings, Surf. Coat. Technol., 2016, 302, p 208–214

    CAS  Google Scholar 

  3. U.P. Kumar, C.J. Kennady, and Q.Y. Zhou, Effect of Salicylaldehyde on Microstructure and Corrosion Resistance of Electrodeposited Nanocrystalline NiW Alloy Coatings, Surf. Coat. Technol., 2015, 283, p 148–155

    Google Scholar 

  4. M. Donten, H. Cesiulis, and Z. Stojek, Electrodeposition and Properties of NiW, FeW and FeNiW Amorphous Alloys: A Comparative Study, Electrochim. Acta, 2000, 45, p p3389–p3396

    Google Scholar 

  5. F.J. He, J. Yang, T.X. Lei, and C.Y. Gu, Structure and Properties of Electrodeposited FeNiW Alloys with Different Levels of Tungsten Content: A Comparative Study, Appl. Surf. Sci., 2007, 253, p p7591–p7598

    Google Scholar 

  6. L.M. Chang, Z.T. Wang, S.Y. Shi, and W. Liu, Study on Microstructure and Properties of Electrodeposited Ni–W Alloy Coating with Glycolic acid System, J. Alloys Compd., 2011, 509, p p1501–p1504

    Google Scholar 

  7. S.H. Islam, Variation of the Mechanical Properties of Tungsten Heavy Alloys Tested at Different Temperatures, Rare Met., 2011, 30, p 392–395

    CAS  Google Scholar 

  8. L. Ribic-Zelenovic, N. Cirovic, M. Spasojevic, N. Mitrovic, A. Maricic, and V. Pavlovic, Microstructural Properties of Electrochemically Prepared NiFeW Powders, Mater. Chem. Phys., 2012, 135, p p212–p219

    Google Scholar 

  9. K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri, Corrosion Behaviour of Electrodeposited Nanocrystalline NiW and NiFeW Alloys, Mater. Sci. Eng. A, 2007, 460–461, p p39–p45

    Google Scholar 

  10. A.L.M. Oliveira, J.D. Costa, M.B. de Sousa, J.J.N. Alves, A.R.N. Campos, R.A.C. Santana, and S. Prasad, Studies on Electrodeposition and Characterization of the Ni-W-Fe Alloys Coatings, J. Alloys Compd., 2015, 619, p p697–p703

    Google Scholar 

  11. J. He, F.L. He, D.W. Li, Y.L. Liu, and D.C. Yin, A Novel Porous Fe/Fe-W Alloy Scaffold with a Double-Layer Structured Skeleton: Preparation, In Vitro Degradability and Biocompatibility, Colloids Surf. B Biointerfaces, 2016, 142, p 325–333

    CAS  Google Scholar 

  12. Z.M. Zhong and S.J. Clouser, Nickel-Tungsten Alloy Brush Plating for Engineering Applications, Surf. Coat. Technol., 2014, 240, p p380–p386

    Google Scholar 

  13. S.O. Moussa, M.A.M. Ibrahim, and S.S.A.E. Rehim, Induced Electrodeposition of Tungsten with Nickel from Acidic Citrate Electrolyte, J. Appl. Electrochem., 2006, 36, p p333–p338

    Google Scholar 

  14. K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri, Synthesis and Evaluation of Hardness and Sliding Wear Resistance of Electrodeposited Nanocrystalline NiFeW Alloys, Mater. Sci. Technol., 2006, 22, p p14–p20

    Google Scholar 

  15. M. Zemanova, M. Krivosudska, M. Chovancova, and V. Jorık, Pulse Current Electrodeposition and Corrosion Properties of NiW Alloy Coatings, J. Appl. Electrochem., 2011, 41, p 1077–1085

    CAS  Google Scholar 

  16. S. Yari and C. Dehghanian, Deposition and Characterization of Nanocrystalline and Amorphous Ni-W Coatings with Embedded Alumina Nanoparticles, Ceram. Int., 2013, 39, p p7759–p7766

    Google Scholar 

  17. L. Elias and A.C. Hegde, Electrodeposition of Laminar Coatings of Ni-W Alloy and Their Corrosion Behaviour, Surf. Coat. Technol., 2015, 283, p p61–p69

    Google Scholar 

  18. T. Nagayama, T. Yamamoto, and T. Nakamura, Thermal expansions and Mechanical Properties of Electrodeposited Fe-Ni alloys in the Invar Composition Range, Electrochim. Acta, 2016, 205, p p178–p187

    Google Scholar 

  19. I. Matsui, H. Mori, T. Kawakatsu, Y. Takigawa, T. Uesugi, and K. Higashi, Enhancement in Mechanical Properties of Bulk Nanocrystalline Fe-Ni Alloys Electrodeposited Using Propionic Acid, Mater. Sci Eng A, 2014, 607, p 505–510

    CAS  Google Scholar 

  20. Y.H. Liu and J.M. Yuan, Investigation of Electroplating NiFeW Ternary Alloy, J. Mater. Prot., 1998, 31, p 19–21

    Google Scholar 

  21. M. Spasojević, L.R. Zelenović, A. Maričić, and P. Spasojević, Structure and Magnetic Properties of Electrodeposited Ni87.3Fe11.3W1.4 Alloy, Powder Technol., 2014, 254, p 439–447

    Google Scholar 

  22. K.H. Hou and Y.C. Chen, Preparation and Wear Resistance of Pulse Electrodeposited NiW/Al2O3 Composite Coatings, Appl. Surf. Sci., 2011, 257, p p6340–p6346

    Google Scholar 

  23. U.R. Kiran, J. Kumar, V. Kumar, M. Sankaranarayana, G.V.S.N. Rao, and T.K. Nandy, Effect of Cyclic Heat Treatment and Swaging on Mechanical Properties of the Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2016, 656, p p256–p265

    Google Scholar 

  24. H.Q. Zhan, F.J. He, H. Ju, and R.S. Zhao, Study on the Properties of Electrodeposited Nickel Tungsten Alloy, J. Mater. Prot., 2008, 41, p p31–p33

    Google Scholar 

  25. M. Ritouet and P. Berthod, Effect of NbC Addition on the High-Temperature Oxidation Resistance of Co- and Ni-Based Chromium-Rich Alloys, Oxid. Met., 2018, 89, p 339–355

    CAS  Google Scholar 

  26. S.F. Ren, J.H. Meng, J.J. Lu, and S.R. Yang, Tribological Behavior of Ti3SiC2 Sliding Against Ni-based Alloys at Elevated Temperatures, Tribol. Lett., 2008, 31, p p129–p137

    Google Scholar 

  27. Rebeka Rudolf and Ivan Anžel, Internal Oxidation Phenomenon in Pure Copper, Met. Mater. Int., 2009, 15, p p259–p264

    Google Scholar 

  28. C. Lian, X.L. Xiao, Z. Chen, Y.X. Liu, E.Y. Zhao, D.S. Wang, C. Chen, and Y.D. Li, Preparation of Hexagonal Ultrathin WO3 Nano-Ribbons and Their Electrochemical Performance as an Anode Material in Lithium ion Batteries, Nano Research, 2016, 9, p 435–441

    CAS  Google Scholar 

  29. QH Huang, South China University of Technology Master Dissertation, 2012

  30. XD Wang, South West University Master Dissertation, 2016

  31. N. Czech, F. Schmitz, and W. Stamm, Microstructural Analysis of the Role of Rhenium in Advanced MCrAIY Coatings, Surf. Coat. Technol., 1995, 76–77, p p28–p31

    Google Scholar 

  32. H.P. Tang, Y. Wang, Y. Liu, W.J. Li, and C. Han, Oxidation Behaviors of Ni-Cr-Al Superalloy Foams at 1000 °C in Air, J. Cent. South Univ., 2013, 20, p p3345–p3353

    Google Scholar 

  33. Z.Y. Liu, W. Gao, K.L. Dahm, and F.H. Wang, Improved Oxide Spallation Resistance of Microcrystalline NiCrAl Coatings, Oxid. Met., 1998, 50, p 51–69

    CAS  Google Scholar 

  34. S.Y. Cui, Q. Miao, W.P. Liang, and B.Q. Li, Oxidation Behavior of NiCoCrAlY Coatings Deposited by Double-Glow Plasma Alloying, Appl. Surf. Sci., 2018, 428, p p781–p787

    Google Scholar 

  35. M. Ansari, R.R. Shoja, M. Barekat, and H.C. Man, High-Temperature Oxidation Behavior of Laser-Aided Additively manufactured NiCrAlY Coating, Corros. Sci., 2017, 118, p p168–p177

    Google Scholar 

  36. Z.Y. Liu, W. Gao, K. Dahm, and F.H. Wang, The Effect of Coating Grain Size on the Selective Oxidation Behaviour of NiCrAl Alloy, Scr. Mater., 1997, 37, p p1551–p1558

    Google Scholar 

  37. H.R. Ren, L. Guo, and Z.C. Guo, Effects of Annealing Temperature on the Microstructure and Mechanical Properties of Electrodeposited Ni-Fe Alloy Foils, High Temp. Mater. Proc., 2016, 36, p p1–p10

    Google Scholar 

  38. ZY Yao, East China University of Science and Technology master dissertation, 2011

  39. B.Y. Choi, J. Liang, and W. Gao, Correlation of Microstructure and High Temperature Oxidation Resistance of Plasma Sprayed NiCrAl, NiCrAlY, and TiAlO Composite Coatings on Ti-6Al-4V, Met. Mater. Int., 2005, 11, p p499–p503

    Google Scholar 

  40. Erlinda V. Ortiz, Daniel O. Bennardi, Daniel E. Bacelo, Silvina E. Fioressi, and Pablo R. Duchowicz, The Conformation-Independent QSPR Approach for Predicting the Oxidation Rate Constant of Water Micropollutants, Environ. Sci. Pollut. Res., 2017, 24, p p27366–p27375

    Google Scholar 

  41. W. Suwanwatana, S. Yarlagadda, and J.W. Gillespie, An investigation of oxidation effects on hysteresis heating of nickel particles, J. Mater. Sci., 2003, 38, p p565–p573

    Google Scholar 

  42. Y. Li, H.B. Shang, J.T. Guo, C. Yuan, and H.C. Yang, Isothermal Oxidation Behaviors of a Cast Ni-Bash Superalloy K35, Acta Metall. Sin., 2003, 39, p p749–p754

    Google Scholar 

  43. C.Y. Li, W.F. Yao, P. Liu, M. Yang, and W.X. Liu, ESEM study on High Temperature Oxidation of Plating nickEl, Ordnance Mater. Sci. Eng., 2004, 27, p p42–p44

    Google Scholar 

  44. Z. Liu, W. Gao, and Y. He, Oxidation Behaviour of Nanocrystalline FeNiCrAl Alloy Coatings, Mater. Sci. Technol., 1999, 15, p p1447–p1450

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Higher School of Science and Technology of Hebei Province in China (Grant No. ZD2014055).

Author information

Authors and Affiliations

Authors

Contributions

JKY conceived the project. QYL, XCZ, QQ, SZ, and JZ designed the experiments.

Corresponding author

Correspondence to Jinku Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Li, Q., Zhao, X. et al. Correlation Between Microstructure and High-Temperature Oxidation Resistance of Jet-Electrodeposited Ni-Based Alloy Coatings. J. of Materi Eng and Perform 29, 3264–3276 (2020). https://doi.org/10.1007/s11665-020-04811-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04811-z

Keywords

Navigation