Skip to main content

Advertisement

Log in

Effect of TiC Content on Tensile Properties, Bend Strength, and Thermal Conductivity of Al-Li-Cu-Mg-Zr Alloy/TiC Composites Produced by Accumulative Roll Bonding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Composite strips based on an Al-Li-Cu-Mg-Zr alloy reinforced with titanium–carbide (TiC) microparticles were manufactured through the accumulative roll bonding (ARB) process. The microstructure, mechanical and thermal conductivity properties of the processed composites have been experimentally investigated and compared with the as-hot-rolled and un-reinforced states. The microstructure of the reinforced sheets shows the excellent reinforcement’s dispersion after the second ARB cycle. In addition, the obtained results indicate that the overall properties of the ARBed strips are enhanced by increasing the TiC content up to 2 wt.%. The processed sheets reinforced with 2 wt.% TiC after two ARB cycles present the superior comprehensive combination of the grain refining, good bonding and proper particle dispersions to reach the outstanding tensile, bending and specific strengths, appropriate tensile elongation and thermal conductivity. Herein, the tensile and bending strengths reach 380.79 and 623.69 MPa, respectively, which are considerably higher than 260.14 and 438.35 MPa, 322.34 and 528.67 MPa of the as-hot-rolled and the un-reinforced sheets after the same cycle, respectively. Moreover, the fracture morphologies of the processed strips exhibit a ductile-shear mixed fracture responding to good elongations of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Moradgholi, A. Monshi, K. Farmanesh, M.R. Toroghinejad, and M.R. Loghman-Estarki, Comparison of Microstructure, Toughness, Mechanical Properties and Work Hardening of Titanium/TiO2 and Titanium/SiC Composites Manufactured by Accumulative Roll Bonding (ARB) Process, Ceram. Int., 2017, 43(10), p 7701–7709

    CAS  Google Scholar 

  2. E. Ahmadi, M. Ranjkesh, E. Mansoori, M. Fattahi, R.Y. Mojallal, and S. Amirkhanlou, Microstructure and Mechanical Properties of Al/ZrC/TiC Hybrid Nanocomposite Filler Metals of Tungsten Inert Gas Welding Fabricated by Accumulative Roll Bonding, J. Manuf. Process., 2017, 26, p 173–177

    Google Scholar 

  3. W. Zheng, Y.X. Gao, X.P. Wang, H. Lu, L.F. Zeng, and Q.F. Fang, High Strength and Damping Capacity of LLZNO/Al Composites Fabricated by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2017, 689, p 306–312

    CAS  Google Scholar 

  4. S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, and K.B. Surreddi, Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Zr-based Glassy Particles Produced by Powder Metallurgy, Acta Mater., 2009, 57, p 2029–2039

    CAS  Google Scholar 

  5. M. Rahimian, N. Parvin, and N. Ehsani, Investigation of Particle Size and Amount of Alumina on Microstructure and Mechanical Properties of Al Matrix Composite Made by Powder Metallurgy, Mater. Sci. Eng. A, 2010, 527(4–5), p 1031–1038

    Google Scholar 

  6. D.B. Miracle and S.L. Donaldson, Composites, ASM International, Cleveland, 2001

    Google Scholar 

  7. K. Sukumaran, K.K. Ravikumar, S.G.K. Pillai, T.P.D. Rajan, M. Ravi, R.M. Pillai, and B.C. Pai, Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite, Mater. Sci. Eng. A, 2008, 490(1–2), p 235–241

    Google Scholar 

  8. S.-N. Chou, J.-L. Huang, D.-F. Lii, and H.-H. Lu, The Mechanical Properties of Al2O3/Aluminum Alloy A356 Composite Manufactured by Squeeze Casting, J. Alloys Compd, 2006, 419(1–2), p 98–102

    CAS  Google Scholar 

  9. C. Lu, K. Tieu, and D. Wexler, Significant Enhancement of Bond Strength in the Accumulative Roll Bonding Process Using Nano-sized SiO2 Particles, J. Mater. Process. Technol., 2009, 209(10), p 4830–4834

    CAS  Google Scholar 

  10. M. Alizadeh and M.H. Paydar, Fabrication of Nanostructure Al/SiCP Composite by Accumulative Roll-Bonding (ARB) Process, J. Alloys Compd., 2010, 492(1–2), p 231–235

    CAS  Google Scholar 

  11. J. Nie, F. Wang, Y. Li, Y. Cao, X. Liu, Y. Zhao, and Y. Zhu, Microstructure evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB) Process, Materials, 2017, 10(2), p 109–121

    Google Scholar 

  12. A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Evaluation of Mechanical Properties of 1050-Al Reinforced with SiC Particles via Accumulative Roll Bonding Process, J. Compos. Mater., 2018, 53(2), p 209–218

    Google Scholar 

  13. M. Reihanian, S. Fayezipour, and S.M. Lari Baghal, Nanostructured Al/SiC-Graphite Composites Produced by Accumulative Roll Bonding: Role of Graphite on Microstructure, Wear and Tensile Behavior, J. Mater. Eng. Perform., 2017, 26(4), p 1908–1919

    CAS  Google Scholar 

  14. M.R. Morovvati and B. Mollaei-Dariani, The Formability Investigation of CNT-Reinforced Aluminum Nano-composite Sheets Manufactured by Accumulative Roll Bonding, Int. J. Adv. Manuf. Technol., 2018, 95(9–12), p 3523–3533

    Google Scholar 

  15. P. Farhadipour, M. Sedighi, and M. Heydari Vini, Influence of Temperature of Accumulative Roll Bonding on the Mechanical Properties of AA5083–1% Al2O3 Composite, Powder Metall. Met. Ceram., 2018, 56(9–10), p 496–503

    CAS  Google Scholar 

  16. M. Abbasi and S.A. Sajjadi, Manufacturing of Al–Al2O3–Mg Multilayered Nanocomposites by Accumulative Roll Bonding Process and Study of Its Microstructure, Tensile, and Bending Properties, J. Compos. Mater., 2017, 52(2), p 147–157

    Google Scholar 

  17. M. Naseri, A. Hassani, and M. Tajally, An alternative Method for Manufacturing Al/B4C/SiC Hybrid Composite Strips by Cross Accumulative Roll Bonding (CARB) Process, Ceram. Int., 2015, 41(10), p 13461–13469

    CAS  Google Scholar 

  18. C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, and R.P. Liu, Evaluation of Mechanical Properties of 1060-Al Reinforced with WC Particles via Warm Accumulative Roll Bonding Process, Mater. Des., 2013, 43, p 367–372

    CAS  Google Scholar 

  19. P. Farhadipour, M. Sedighi, and M.H. Vini, Using Warm Accumulative Roll Bonding Method to Produce Al-Al2O3 Metal Matrix Composite, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, 231(5), p 889–896

    CAS  Google Scholar 

  20. R. Jamaati and M.R. Toroghinejad, Application of ARB Process for Manufacturing High-Strength, Finely Dispersed and Highly Uniform Cu/Al2O3 Composite, Mater. Sci. Eng. A, 2010, 527(27–28), p 7430–7435

    Google Scholar 

  21. M. Rezayat, A. Akbarzadeh, and A. Owhadi, Fabrication of High-Strength Al/SiCp Nanocomposite Sheets by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2012, 43(6), p 2085–2093

    CAS  Google Scholar 

  22. L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen, and B. Krit, Microstructure and Mechanical Properties of Mg-5Li-1Al Sheets Prepared by Accumulative Roll Bonding, J. Mater. Sci. Technol., 2018, 34(2), p 317–323

    Google Scholar 

  23. A. Medjahed, B. Li, L. Hou, R. Wu, A. Zegaoui, M. Derradji, and H. Benyamina, Evolution of Microstructure, Mechanical Properties, and Thermal Conductivity of an Al-Li-Cu-Mg-Zr Alloy Processed by Accumulative Roll Bonding (ARB), JOM, 2019, https://doi.org/10.1007/s11837-019-03646-x

    Article  Google Scholar 

  24. T. Yu, B. Li, A. Medjahed, L. Hou, R. Wu, J. Zhang, and J. Sun, Impeding Effect of the Al3(Er, Zr, Li) Particles on Planar Slip and Intergranular Fracture Mechanism of Al-3Li-1Cu-0.1Zr-X Alloys, Mater. Charact., 2019, 147, p 146–154

    CAS  Google Scholar 

  25. A. Medjahed, H. Moula, A. Zegaoui, M. Derradji, A. Henniche, R. Wu, L. Hou, J. Zhang, and M. Zhang, Influence of the Rolling Direction on the Microstructure, Mechanical, Anisotropy and Gamma Rays Shielding Properties of an Al-Cu-Li-Mg-X Alloy, Mater. Sci. Eng. A, 2018, 732, p 129–137

    CAS  Google Scholar 

  26. A. Medjahed, A. Henniche, M. Derradji, T. Yu, Y. Wang, R. Wu, L. Hou, J. Zhang, X. Li, and M. Zhang, Effects of Cu/Mg Ratio on the Microstructure, Mechanical and Corrosion Properties of Al-Li-Cu-Mg-X Alloys, Mater. Sci. Eng. A, 2018, 718, p 241–249

    CAS  Google Scholar 

  27. A. Zegaoui, M. Derradji, R. Ma, W. Cai, A. Medjahed, W. Liu, A. Qadeer Dayo, and J. Wang, Silane-Modified Carbon Fibers Reinforced Cyanate Ester/Benzoxazine Resin Composites: Morphological, Mechanical and Thermal Degradation Properties, Vacuum, 2018, 150, p 12–23

    CAS  Google Scholar 

  28. A. Zegaoui, M. Derradji, R.-K. Ma, W.-A. Cai, A. Medjahed, W.-B. Liu, A.Q. Dayo, J. Wang, and G.-X. Wang, Influence of Fiber Volume Fractions on the Performances of Alkali Modified Hemp Fibers Reinforced Cyanate Ester/Benzoxazine Blend Composites, Mater. Chem. Phys., 2018, 213, p 146–156

    CAS  Google Scholar 

  29. A. Medjahed, M. Derradji, A. Zegaoui, R. Wu, and B. Li, Mechanical and Gamma Rays Shielding Properties of a Novel Fiber-Metal Laminate Based on a Basalt/Phthalonitrile Composite and an Al-Li Alloy, Compos. Struct., 2019, 210, p 421–429

    Google Scholar 

  30. A. Medjahed, M. Derradji, A. Zegaoui, R. Wu, B. Li, Y. Wang, L. Hou, J. Zhang, and M. Zhang, Fabrication Process, Tensile, and Gamma Rays Shielding Properties of Newly Developed Fiber Metal Laminates Based on an Al-Li Alloy and Carbon FibersTungsten Carbide Nanoparticles Reinforced Phthalonitrile Resin Composite, Adv. Eng. Mater., 2018, 21(2), p 1800779

    Google Scholar 

  31. M. Sedighi, M.H. Vini, and P. Farhadipour, Effect of Alumina Content on the Mechanical Properties of AA5083/Al2O3 Composites Fabricated by Warm Accumulative Roll Bonding, Powder Metall. Met. Ceram., 2016, 55(7–8), p 413–418

    CAS  Google Scholar 

  32. C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, and R.P. Liu, Effect of W Particles on the Properties of Accumulatively Roll-Bonded Al/W Composites, Mater. Sci. Eng. A, 2012, 547, p 120–124

    CAS  Google Scholar 

  33. M. Alizadeh, Effects of Temperature and B4C Content on the Bonding Properties of Roll-Bonded Aluminum Strips, J. Mater. Sci., 2012, 47(11), p 4689–4695

    CAS  Google Scholar 

  34. Y.-C. Kang and S.L.-I. Chan, Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites, Mater. Chem. Phys., 2004, 85(2–3), p 438–443

    CAS  Google Scholar 

  35. J. Cabrero, F. Audubert, and R. Pailler, Fabrication and Characterization of Sintered TiC–SiC Composites, J. Eur. Ceram. Soc., 2011, 31(3), p 313–320

    CAS  Google Scholar 

  36. C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, and M. Göken, Accelerated Grain Refinement during Accumulative Roll Bonding by Nanoparticle Reinforcement, Scr. Mater., 2011, 64(3), p 245–248

    CAS  Google Scholar 

  37. H. Akbari Beni, M. Alizadeh, M. Ghaffari, and R. Amini, Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB, Compos. Part B Eng., 2014, 58, p 438–442

    CAS  Google Scholar 

  38. R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2010, 31(10), p 4816–4822

    CAS  Google Scholar 

  39. S. Khoramkhorshid, M. Alizadeh, A.H. Taghvaei, and S. Scudino, Microstructure and Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Al84Gd6Ni7Co3 Glassy Particles Produced by Accumulative Roll Bonding, Mater. Des., 2016, 90, p 137–144

    CAS  Google Scholar 

  40. S.S. Reihani, Processing of Squeeze Cast Al6061–30vol% SiC Composites and Their Characterization, Mater. Des., 2006, 27(3), p 216–222

    Google Scholar 

  41. S.H. Dhoria, V.D. Rao, and K.V. Subbaiah, Mechanical and Wear Behaviour of 6351 Al/Gr/SiC Composites Fabricated by Squeeze Casting, Mater. Today Proc., 2019, 1(18), p 2107–2113

    Google Scholar 

  42. C.H. Fan, O.U. Ling, Z.Y. Hu, J.J. Yang, C.H. Gang, and H.G. Yan, Microstructures and Mechanical Properties of BP/7A04 Al Matrix Composites, Trans. Nonferr. Met. Soc. China, 2019, 29(10), p 2027–2034

    CAS  Google Scholar 

  43. Z. Wang, K.G. Prashanth, S. Scudino, A.K. Chaubey, D.J. Sordelet, W.W. Zhang, Y.Y. Li, and J. Eckert, Tensile Properties of Al Matrix Composites Reinforced with In Situ Devitrified Al84Gd6Ni7Co3 Glassy Particles, J. Alloys Compd., 2014, 586, p S419–S422

    CAS  Google Scholar 

  44. S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al–Cu–Mg–(Li) Based Alloys, Int. Mater. Rev., 2005, 50(4), p 193–215

    Google Scholar 

  45. N.E. Prasad, A. Gokhale, and R. Wanhill, Aluminum-Lithium Alloys, Elsevier, Amsterdam, 2014

    Google Scholar 

  46. J.-X. Xue, J.-X. Liu, G.-J. Zhang, H.-B. Zhang, T. Liu, X.-S. Zhou, and S.-M. Peng, Improvement in Mechanical/Physical Properties of TiC-Based Ceramics Sintered at 1500 C for Inert Matrix Fuels, Scr. Mater., 2016, 114, p 5–8

    CAS  Google Scholar 

  47. A. Medjahed, M. Derradji, A. Zegaoui, R. Wu, and B. Li, Processability and Mechanical Properties of Surface-Modified Glass-Fibres/Phthalonitrile Composite and Al–Li Alloy Fibre-Metal-Laminates, Mater. Sci. Technol., 2019, 35(6), p 661–668

    CAS  Google Scholar 

  48. A.K. Dewi, S. Yamaguchi, T. Onitsuka, and M. Uno, Thermal Conductivity Estimation of Fully Ceramic Microencapsulated Pellets with ZrO2 as Simulated Particles, J. Nucl. Mater., 2019, 525, p 145–151

    CAS  Google Scholar 

  49. K. Mizuuchi, K. Inoue, Y. Agari, Y. Morisada, M. Sugioka, M. Tanaka, T. Takeuchi, J.I. Tani, M. Kawahara, and Y. Makino, Processing of Diamond Particle Dispersed Aluminum Matrix Composites in Continuous Solid–Liquid Co-existent State by SPS and Their Thermal Properties, Compos. Part B Eng., 2011, 42(4), p 825–831

    Google Scholar 

  50. G. Bai, L. Wang, Y. Zhang, X. Wang, J. Wang, M.J. Kim, and H. Zhang, Tailoring Interface Structure and Enhancing Thermal Conductivity of Cu/Diamond Composites by Alloying Boron to the Cu Matrix, Mater. Charact., 2019, 152, p 265–275

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by National Natural Science Foundation of China (51671063, 51771060, 51871068), Heilongjiang Province Natural Science Foundation (ZD2017010), the Fundamental Research Funds for the Central Universities (HEUCFG201834), Harbin City Application Technology Research and Development Project (2017RAQXJ032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medjahed, A., Li, B., Wu, R. et al. Effect of TiC Content on Tensile Properties, Bend Strength, and Thermal Conductivity of Al-Li-Cu-Mg-Zr Alloy/TiC Composites Produced by Accumulative Roll Bonding. J. of Materi Eng and Perform 29, 3253–3263 (2020). https://doi.org/10.1007/s11665-020-04809-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04809-7

Keywords

Navigation