Skip to main content
Log in

Reduction and Immobilization of Chromate Using Nanometric Pyrite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two very fine pyrites were prepared using a top-down and a bottom-up method. A natural pyrite was extensively ball-milled and then sieved to obtain the fraction less than 25 µm (surface area 17 m2/g), while sub-micrometer pyrite (FeS2) rods with a surface area of 77 m2/g were prepared by the hydrothermal reaction of ferrous sulfate with sodium sulfite. The ground natural pyrite was found to fairly rapidly reduce chromium(VI) in a 100 ppm solution to chromium(III), but it only immobilized 65.6% of the chromium(III) product so it failed to lower the total chromium below the maximum contaminant level (MCL) for drinking water. However, the synthetic sub-micrometer pyrite completely reduced the chromium(VI) to chromium(III) within one minute and to reduce the total chromium concentration below the detection limit of 0.5 ppb within 3 min. The reactivity of FeS2 toward chromium(VI) does not correlate well with surface area due to the complex series of reaction that occur in both the redox and metal immobilization processes. Nevertheless, size reduction makes it progressively possible to completely remove chromium from chromate-containing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Dhal, H.N. Thatoi, N.N. Das, and B.D. Pandey, Chemical and Microbial Remediation of Hexavalent Chromium from Contaminated Soil and Mining/Metallurgical Solid Waste: A Review, J. Hazard. Mater., 2013, 250-251, p 272–291

    Google Scholar 

  2. A.L. Rowbotham, L.S. Levy, and L.K. Shuker, Chromium in the Environment: An Evaluation of Exposure of the UK General Population and Possible Adverse Health Effect, J. Toxicol. Environ. Health Part B, 2000, 3(3), p 145–178

    CAS  Google Scholar 

  3. R.A. Anderson, Nutritional Role of Chromium, Sci. Total Environ., 1981, 17(1), p 13–29

    CAS  Google Scholar 

  4. J.B. Vincent, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res., 2000, 33(7), p 503–510

    CAS  Google Scholar 

  5. H.F. Smyth, C.P. Carpenter, C.S. Weil, U.C. Pozzani, J.A. Striegel, and J.S. Nycum, Range-Finding Toxicity Data: List VII, Am. Ind. Hyg. Assoc. J., 1969, 30(5), p 470–476

    CAS  Google Scholar 

  6. D.B. Kaufman, W. DiNicola, and R. McIntosh, Acute Potassium Dichromate Poisoning: Treated by Peritoneal Dialysis, Am. J. Dis. Child., 1970, 119(4), p 374–376

    CAS  Google Scholar 

  7. L.A. Saryan and M. Reedy, Chromium Determinations in a Case of Chromic Acid Ingestion, J. Anal. Toxicol., 1988, 12(3), p 162–164

    CAS  Google Scholar 

  8. R.W. Puls, D.A. Clark, C.J. Paul, and J. Vardy, Transport and Transformation of Hexavalent Chromium Through Soils and into Ground Water, J. Soil Contam., 1994, 3, p 203–224

    CAS  Google Scholar 

  9. J.H. Espenson, Rate studies on the Primary Step of the Reduction of Chromium(VI) by Iron(II), J. Am. Chem. Soc., 1970, 92, p 1180

    Google Scholar 

  10. S.E. Fendorf and G. Li, Kinetics of Chromate Reduction by Ferrous Iron, Environ. Sci. Technol., 1995, 30, p 1614–1617

    Google Scholar 

  11. E. Salazar, M.I. Ortiz, and A.M. Urtiaga, Kinetics of the Separation and Concentration of Chromium (VI) with Emulsion Liquid Membranes, Ind. Eng. Chem. Res., 1992, 31, p 1523

    CAS  Google Scholar 

  12. J.C. Seaman, P.M. Bertsch, and L. Schwallie, In situ Cr(VI) Reduction Within Coarse Textured, Oxide-Coated Soil and Aquifer Systems Using Fe(II) Solution, Environ. Sci. Technol., 1999, 33, p 938–944

    CAS  Google Scholar 

  13. L.E. Eary and D. Rai, Chromate Removal from Aqueous Wastes by Reduction with Ferrous ION, Environ. Sci. Technol., 1988, 22, p 972–977

    CAS  Google Scholar 

  14. D.W. Blowes, C.J. Ptacek, and J.L. Jambor, In-situ Remediation of Cr(VI)-Contaminated Groundwater Using Permeable Reactive Walls: Laboratory Studies, Environ. Sci. Technol., 1997, 31, p 3348–3357

    CAS  Google Scholar 

  15. S.J. Fuller, D.I. Stewart, and I.T. Burke, Chromate Reduction in Highly Alkaline Groundwater by Zerovalent Iron: Implications for Its Use in a Permeable Reactive Barrier, Ind. Eng. Chem. Res., 2013, 52(13), p 4704–4714

    CAS  Google Scholar 

  16. F. Battaglia-Brunet, S. Touze, C. Michel, and I. Ignatiadis, Treatment of Chromate-Polluted Groundwater in a 200 dm3 Pilot Bioreactor Fed with Hydrogen, J. Chem. Technol. Biotechnol., 2006, 81(9), p 1506–1513

    CAS  Google Scholar 

  17. C. Kim, Q. Zhou, B. Deng, E.C. Thornton, and H. Xu, Chromium (VI) Reduction by Hydrogen Sulfide in Aqueous Media: Stoichiometry and Kinetics, Environ. Sci. Technol., 2001, 35(11), p 2219–2225

    CAS  Google Scholar 

  18. M. Pettine, F.J. Millero, and R. Passino, Reduction of Chromium(VI) with Hydrogen Sulfide in NaCl Media, Mar. Chem., 1994, 46, p 335–344

    CAS  Google Scholar 

  19. L. Legrand, A. El Figuigui, F. Mercier, and A. Chausse, Reduction of Aqueous Chromate by Fe(II)/Fe(III) Carbonate Green Rust: Kinetic and Mechanistic Studies, Environ. Sci. Technol., 2004, 38(17), p 4587–4595

    CAS  Google Scholar 

  20. D.L. Bond and S. Fendorf, Kinetics and Structural Constraints of Chromate Reduction by Green Rusts, Environ. Sci. Technol., 2003, 37(12), p 2750–2757

    CAS  Google Scholar 

  21. D.A. Dixon, N.P. Sadler, and T.P. Dasgupta, Oxidation of Biological Substrates by Chromium(VI). Part 1. Mechanism of the Oxidation of L-Ascorbic Acid in Aqueous Solution, J. Chem. Soc., Dalton Trans., 1993, 23, p 3489–3495

    Google Scholar 

  22. K.N. Barber, C.K. Perkins, and A.W. Apblett, Reduction of Chromate by Molybdenum Hydrogen Bronze, Can. J. Chem., 2015, 94(4), p 401–405

    Google Scholar 

  23. A. Vengosh, R. Coyte, J. Karr, J.S. Harkness, A.J. Kondash, L.S. Ruhl, R.B. Merola, and G.S. Dywer, Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina, Environ. Sci. Technol. Lett., 2016, 3(12), p 409–414

    CAS  Google Scholar 

  24. Y. Inoue, T. Sakai, and H. Kumagai, Simultaneous Determination of Chromium(III) and Chromium(VI) by Ion Chromatography with Inductively Coupled Plasma Mass Spectrometry, J. Chromatogr. A, 1995, 706(1), p 127–136

    CAS  Google Scholar 

  25. F.T. Stanin, The Transport and Fate of Chromium(VI) in the Environment, CRC Press LLC, Boca Raton, 2005, p 165–214

    Google Scholar 

  26. C. Oze, D.K. Bird, and S. Fendorf, Genesis of Hexavalent Chromium from Natural Sources in Soil and Groundwater, Proc. Natl. Acad. Sci., 2007, 104(16), p 6544

    CAS  Google Scholar 

  27. V.M. Burns and R.G. Burns, Mineralogy of Chromium, Geochim. Cosmochim. Acta, 1975, 39(6), p 903–910

    CAS  Google Scholar 

  28. T.S. Chatterjee, Ed., Reduction and Removal of hexavalent Chromium from Effluent Water Using Pyrites, Hindustal Fertilizer Corp., India, 1980

    Google Scholar 

  29. C.-M. Chon, J.G. Kim, and H.-S. Moon, Kinetics of chromate reduction by pyrite and biotite under acidic conditions, Appl. Geochem., 2006, 21(9), p 1469–1481

    CAS  Google Scholar 

  30. C.-M. Chon, J.G. Kim, and H.-S. Moon, Evaluating the Transport and Removal of Chromate Using Pyrite and Biotite Columns, Hydrol. Processes, 2007, 21(14), p 1957–1967

    CAS  Google Scholar 

  31. F. Demoisson, M. Mullet, and B. Humbert, Pyrite Oxidation by Hexavalent Chromium: Investigation of the Chemical Processes by Monitoring of Aqueous Metal Species, Environ. Sci. Technol., 2005, 39(22), p 8747–8752

    CAS  Google Scholar 

  32. C.S. Doyle, T. Kendelewicz, B.C. Bostick, and G.E. Brown, Soft x-Ray Spectroscopic Studies of the Reaction of Fractured Pyrite Surfaces with Cr(VI)-Containing Aqueous Solutions, Geochim. Cosmochim. Acta, 2004, 68(21), p 4287–4299

    CAS  Google Scholar 

  33. Z. Houda, Q. Wang, Y. Wu, and X. Xu, Reduction Remediation of Hexavalent Chromium by Pyrite in the Aqueous Phase, J. Appl. Sci., 2007, 7(11), p 1522–1527

    CAS  Google Scholar 

  34. C. Kantar, C. Ari, S. Keskin, Z.G. Dogaroglu, A. Karadeniz, and A. Alten, Cr(VI) Removal from Aqueous Systems Using Pyrite as the Reducing Agent: Batch, Spectroscopic and Column Experiments, J. Contam. Hydrol., 2015, 174, p 28–38

    CAS  Google Scholar 

  35. M. Liang, C. Zhong, B. Liu, P. Zhang, and Y. Chen, Feasibility of Natural Pyrite to Treat Cr(VI)-Containing Waste, Guangzhou Daxue Xuebao, Ziran Kexueban, 2007, 6(1), p 56–59

    CAS  Google Scholar 

  36. Y.-T. Lin and C.-P. Huang, Reduction of Chromium(VI) by Pyrite in Dilute Aqueous Solutions, Sep. Purif. Technol., 2008, 63(1), p 191–199

    CAS  Google Scholar 

  37. G.W. Luther, III, Pyrite Synthesis Via Polysulfide Compounds, Geochim. Cosmochim. Acta, 1991, 55(10), p 2839–2849

    CAS  Google Scholar 

  38. E.N. Primo, M.V. Bracamonte, G.L. Luque, P.G. Bercoff, E.P.M. Leiva, and D.E. Barraco, Mechanochemically Synthesized Pyrite and Its Electrochemical Behavior as Cathode for Lithium Batteries, J. Solid State Electrochem., 2019, 23(6), p 1929–1938

    CAS  Google Scholar 

  39. W.M.B. Roberts, A.L. Walker, and A.S. Buchanan, Chemistry of Pyrite Formation in Aqueous Solution and Its Relation to the Depositional Environment, Miner. Deposita, 1969, 4(1), p 18–29

    CAS  Google Scholar 

  40. L. Meng, Y.H. Liu, and W. Huang, Synthesis of Pyrite Thin Films Obtained by Thermal-Sulfurating Iron Films at Different Sulfur Atmosphere Pressure, Mater. Sci. Eng., B, 2002, B90(1–2), p 84–89

    CAS  Google Scholar 

  41. H. Qin, J. Jia, L. Lin, H. Ni, M. Wang, and L. Meng, Pyrite FeS2 Nanostructures: Synthesis, Properties and Applications, Mater. Sci. Eng., B, 2018, 236–237, p 104–124

    Google Scholar 

  42. H. Xian, J. Zhu, X. Liang, and H. He, Morphology Controllable Syntheses of Micro- and Nano-Iron Pyrite Mono- and Poly-Crystals: A Review, RSC Adv., 2016, 6(38), p 31988–31999

    CAS  Google Scholar 

  43. M.V. Morales-Gallardo, A.M. Ayala, M. Pal, M.A. Cortes Jacome, J.A. Toledo Antonio, and N.R. Mathews, Synthesis of Pyrite FeS2 Nanorods by Simple Hydrothermal Method and Its Photocatalytic Activity, Chem. Phys. Lett., 2016, 660, p 93–98

    CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation REU program under Grant No. CHE-1559874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen W. Apblett.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeson, A., Reed, T. & Apblett, A.W. Reduction and Immobilization of Chromate Using Nanometric Pyrite. J. of Materi Eng and Perform 29, 5557–5563 (2020). https://doi.org/10.1007/s11665-020-04801-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04801-1

Keywords

Navigation