Skip to main content
Log in

Bainitic Transformation and Mechanical Properties of Low-Carbon High-Strength Bainitic Steels with Mo Addition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two low-carbon high-strength bainitic steels with/without molybdenum (Mo) addition were designed to investigate the effect of Mo on bainitic transformation, microstructure and properties. The results show that during austempering, Mo addition increases the amount of isothermal bainite transformation and slightly accelerates the bainite transformation kinetics. It is mainly attributed to the fact that there is the ferrite transformation in Mo-free steel but not in Mo-added steel even cooled at a very high cooling rate before austempering. In Mo-free steel, the formation of ferrite leads to the higher carbon content in untransformed austenite with higher stability and thus retards the isothermal bainite transformation kinetics. The ferrite transformation controlled by carbon diffusion is strongly inhibited in the Mo-added steel because Mo addition decreases obviously the diffusion coefficient of carbon and grain boundaries energies. In addition, the promoted effect of Mo addition on isothermal bainite transformation is stronger at lower austempering temperature. Mo addition leads to the more and finer bainite plates and increases the strength of low-carbon bainitic steel. Moreover, the volume fraction of retained austenite first decreases and then increases in Mo-free steel with the increase in austempering temperature, whereas it presents the inverse trend in Mo-added steel. Similarly, during continuous cooling process, Mo addition effectively retards the formation of high-temperature products and thus improves the tensile properties of low-carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43(11), p 1821–1825

    Article  CAS  Google Scholar 

  2. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, and Z.L. Xue, Effects of Al Addition on Bainite Transformation and Properties of High-Strength Carbide-Free Bainitic Steels, J. Iron. Steel Res. Int., 2019, 26(8), p 846–855

    Article  CAS  Google Scholar 

  3. K. Zhu, C. Oberbillig, C. Musik, D. Loison, and T. Iung, Effect of B and B + Nb on the Bainitic Transformation in Low Carbon Steels, Mater. Sci. Eng. A, 2011, 528(12), p 4222–4231

    Article  Google Scholar 

  4. F.G. Caballero and H.K.D.H. Bhadeshia, Very Strong Bainite, Curr. Opin. Solid ST. Mater. Sci., 2004, 8, p 251–257

    Article  CAS  Google Scholar 

  5. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18(3), p 279–284

    Article  CAS  Google Scholar 

  6. J. Kong and C. Xie, Effect of Molybdenum on Continuous Cooling Bainite Transformation of Low-Carbon Microalloyed Steel, Mater. Des., 2006, 27(10), p 1169–1173

    Article  CAS  Google Scholar 

  7. H.J. Hu, G. Xu, M.X. Zhou, and Q. Yuan, Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels, Metals, 2016, 6, p 173–182

    Article  Google Scholar 

  8. J. Chen, S. Tang, Z.Y. Liu, and G.D. Wang, Influence of Molybdenum Content on Transformation Behavior of High Performance Bridge Steel During Continuous Cooling, Mater. Des., 2013, 49, p 465–470

    Article  CAS  Google Scholar 

  9. T. Sourmail and V. Smanio, Low Temperature Kinetics of Bainite Formation in High Carbon Steels, Acta Mater., 2013, 61, p 2639–2648

    Article  CAS  Google Scholar 

  10. J.Y. Chae, J.H. Jang, G.H. Zhang, K.H. Kim, J.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh, Dilatometric Analysis of Cementite Dissolution in Hypereutectoid Steels Containing Cr, Scr. Mater., 2011, 65, p 245–248

    Article  CAS  Google Scholar 

  11. Y. Xia, G. Miyamoto, Z.G. Yang, C. Zhang, and T. Furuhara, Direct Measurement of Carbon Enrichment in the Incomplete Bainite Transformation in Mo Added Low Carbon Steels, Acta Mater., 2015, 91, p 10–18

    Article  CAS  Google Scholar 

  12. J.Y. Tian, G. Xu, Z.Y. Jiang, Q. Yuan, G.H. Chen, and H.J. Hu, Effect of Austenisation Temperature on Bainite Transformation Below Martensite Starting Temperature, Mater. Sci. Technol., 2019, 35, p 1539–1550

    Article  CAS  Google Scholar 

  13. M. Peet, H.K.D.H. Bhadeshia, MAP Program MAP_STEEL_MUCG83, Materials Algorithms Project (MAP), University of Cambridge, Cambridge.

  14. J.Y. Tian, G. Xu, M.X. Zhou, and H.J. Hu, Refined Bainite Microstructure and Mechanical Properties of a High-Strength Low-Carbon Bainitic Steel Treated by Austempering Below and Above MS, Steel Res. Int., 2018, 89, p 1–10

    Article  Google Scholar 

  15. J.Y. Tian, G.H. Chen, Y.W. Xu, Z.Y. Jiang, and G. Xu, Comprehensive Analysis of the Effect of Ausforming on the Martensite Start Temperature in a Fe-C-Mn-Si Medium-Carbon High-Strength Bainite Steel, Metall. Mater. Trans. A, 2019, 50(10), p 4541–4549

    Article  CAS  Google Scholar 

  16. J.Y. Tian, G. Xu, Z.Y. Jiang, H.J. Hu, Q. Yuan, and X.L. Wan, In-Situ Observation of Martensitic Transformation in a Fe-C-Mn-Si Bainitic Steel During Austempering, Met. Mater. Int., 2019, https://doi.org/10.1007/s12540-019-00370-8

    Article  Google Scholar 

  17. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed., The Institute of Materials, London, 2001, p 117–187

    Google Scholar 

  18. Z.Y. Chen, J.X. Li, J.J. Qi, L.Q. Chen, L. Sun, and G.D. Wang, Effects of Nb on Bainite Transformation Behavior and Mechanical Properties of Low-Carbon Bainitic Steels, Steel Res. Int., 2019, 90, p 1–10

    Google Scholar 

  19. B. Oztur, V.L. Fearing, J.A. Ruth, and G. Simkovich, The Diffusion Coefficient of Carbon in Cementite, Fe3C, at 450 °C, Solid State Ion., 1984, 12, p 145–151

    Article  Google Scholar 

  20. E. Essadiqi and J.J. Jonas, Effect of Deformation on Ferrite Nucleation and Growth in a Plain Carbon and Two Microalloyed Steels, Metall. Mater. Trans. A, 1989, 20(6), p 987–998

    Article  Google Scholar 

  21. G. Miyamoto, K. Yokoyama, and T. Furuhara, Quantitative Analysis of Mo Solute Drag Effect on Ferrite and Bainite Transformations in Fe-0.4C-0.5Mo Alloy, Acta Mater., 2019, 177, p 187–197

    Article  CAS  Google Scholar 

  22. J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, and H.J. Hu, In Situ Observation of the Lengthening Rate of Bainite Sheaves During Continuous Cooling Process in a Fe-C-Mn-Si Superbainitic Steel, Trans. Indian Inst. Met., 2018, 71(1), p 185–194

    Article  CAS  Google Scholar 

  23. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed, Stress Induced Transformation to Bainite in Fe-Cr-Mo-C Pressure Vessel Steel, Mater. Sci. Technol., 1991, 7, p 686–698

    Article  CAS  Google Scholar 

  24. F.R. Xiao, B. Liao, Y.Y. Shan, and K. Yang, Isothermal Transformation of Low-Carbon Microalloyed Steels, Mater. Charact., 2005, 54, p 417–422

    Article  CAS  Google Scholar 

  25. S.B. Singh and H.K.D.H. Bhadeshia, Estimation of Bainite Plate-Thickness in Low-Alloy Steels, Mater. Sci. Eng. A, 1998, 245(1), p 72–79

    Article  Google Scholar 

  26. H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu, The Effects of Nb and Mo Addition on Transformation and Properties in Low Carbon Bainitic Steels, Mater. Des., 2015, 84, p 95–99

    Article  CAS  Google Scholar 

  27. A. Morozova and R. Kaibyshev, Grain Refinement and Strengthening of a Cu-0.1Cr-0.06Zr Alloy Subjected to Equal Channel Angular Pressing, Philos. Mag., 2017, 97(24), p 2053–2076

    Article  CAS  Google Scholar 

  28. S. Takeuchi, Solid-Solution Strengthening in Single Crystals of Iron Alloys, J. Phys. Soc. Jpn., 1969, 27(4), p 929–940

    Article  CAS  Google Scholar 

  29. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H.K.D.H. Bhadeshia, In-Situ Observations of Lattice Parameter Fluctuations in Austenite and Transformation to Bainite, Metall. Mater. Trans. A, 2005, 36, p 3281–3289

    Article  Google Scholar 

  30. C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong, Characterization of Microstructure Obtained by Quenching and Partitioning Process in Low Alloy Martensitic Steel, Mater. Sci. Eng. A, 2010, 527, p 3442–3449

    Article  Google Scholar 

  31. X.Y. Long, J. Kang, B. Lv, and F.C. Zhang, Carbide-Free Bainite in Medium Carbon Steel, Mater. Des., 2014, 64, p 237–245

    Article  CAS  Google Scholar 

  32. J.Y. Tian, G. Xu, Z.Y. Jiang, H.J. Hu, and M.X. Zhou, Efect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel, Met. Mater. Int., 2018, 24, p 1202–1212

    Article  CAS  Google Scholar 

  33. G. Mandal, C. Roy, S.K. Ghosh, and S. Chatterjee, Structure–Property Relationship in a 2 GPa Grade Micro-alloyed Ultrahigh Strength Steel, J. Alloys Compd., 2017, 705, p 817–827

    Article  CAS  Google Scholar 

  34. R.K. Dutta, M. Amirthalingam, M.J.M. Hermans, and I.M. Richardson, Kinetics of Bainitic Transformation and Transformation Plasticity in a High Strength Quenched and Tempered Structural Steel, Mater. Sci. Eng. A, 2013, 559, p 86–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from Major Development Project of Hebei Province (18211019D), Project of “Three-three-three talents” in Hebei Province (A201803007) and Major Project of Science and Technology of HBIS GROUP (HG2018203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenye Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Qi, J., Liu, H. et al. Bainitic Transformation and Mechanical Properties of Low-Carbon High-Strength Bainitic Steels with Mo Addition. J. of Materi Eng and Perform 29, 2428–2439 (2020). https://doi.org/10.1007/s11665-020-04784-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04784-z

Keywords

Navigation