Skip to main content
Log in

Hot Deformation Behavior and Softening Mechanism of As-Cast S32750 Super Duplex Stainless Steel at Low and High Strain Rates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the hot deformation behavior and softening mechanism of as-cast S32750 super duplex stainless steel were investigated at low and high strain rates by SEM, EBSD and TEM techniques. Hot compression tests were carried out at the temperature range of 950-1200 °C and strain rates of 0.1, 25 s−1 up to true strain of 1.0 using Gleeble-3800 thermomechanical simulator. The coupling mechanism of the two phases under different deformation conditions determined two types of flow curve characteristics: “yield-point-like” characteristic and typical dynamic recrystallization characteristic. It was found that dynamic recovery and dynamic recrystallization (DRX) were the dominant restoration mechanisms at low and high temperatures, respectively, in austenite phase. The DRX grains were mainly formed through strain-induced boundary migration mechanism located near the austenite/ferrite interface regions. A strong and positive correlation was observed between DRX fraction and the formation of Σ3 twin boundaries. There was an abnormal relationship between DRX fraction and strain rate. The DRX was promoted by increasing strain rate from 0.1 to 25 s−1 at 1200 °C due to weakened strain partitioning and increment in dislocation density, while the strain rate had a minimal effect on DRX fraction at 950 and 1050 °C. A high degree of DRX, approximately 60%, was found within the ferrite phase under all deformation conditions. The softening mechanism within ferrite could be explained by continuous DRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.O. Nilsson, Super Duplex Stainless Steels, Mater. Sci. Technol. Lond., 1992, 8(8), p 685–700

    CAS  Google Scholar 

  2. N. Llorca-Isern, A. Biserova-Tahchieva, I. Lopez-Jimenez, I. Calliari, J.M. Cabrera, and A. Roca, Influence of Severe Plastic Deformation in Phase Transformation Of Superduplex Stainless Steels, J. Mater. Sci., 2019, 54(3), p 2648–2657

    CAS  Google Scholar 

  3. G. Argandona, M.V. Biezma, J.M. Berrueta, C. Berlanga, and A. Ruiz, Detection of Secondary Phases in UNS S32760 Superduplex Stainless Steel by Destructive and Non-destructive Techniques, J. Mater. Eng. Perform., 2016, 25(12), p 5269–5279

    CAS  Google Scholar 

  4. K.S. de Assis, A.C. Rocha, I.C.P. Margarit-Mattos, F.A.S. Serra, and O.R. Mattos, Practical Aspects on the Use of On-Site Double Loop Electrochemical Potentiodynamic Reactivation Technique (DL-EPR) for Duplex Stainless Steel, Corros. Sci., 2013, 74, p 250–255

    Google Scholar 

  5. B. Zhang, Z. Jiang, H. Li, S. Zhang, H. Feng, and H. Li, Precipitation Behavior and Phase Transformation of Hyper Duplex Stainless Steel UNS S32707 at Nose Temperature, Mater. Charact., 2017, 129, p 31–39

    CAS  Google Scholar 

  6. K. Devendranath Ramkumar, D. Mishra, B. Ganesh Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A.M. Rabel, Effect of Optimal Weld Parameters in the Microstructure and Mechanical Properties of Autogeneous Gas Tungsten Arc Weldments of Super-Duplex Stainless Steel UNS S32750, Mater. Des., 2015, 66, p 356–365

    CAS  Google Scholar 

  7. I. Gutierrez and A. Iza-Mendia, Duplex Stainless Steels, Wiely, Hoboken, 2013, p 30–38

    Google Scholar 

  8. Y. Zhao, Y. Wang, S. Tang, W. Zhang, and Z. Liu, Edge Cracking Prevention in 2507 Super Duplex Stainless Steel by Twin-Roll Strip Casting and Its Microstructure and Properties, J. Mater. Process. Technol., 2019, 266, p 246–254

    CAS  Google Scholar 

  9. A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite–Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2011, 528(3), p 1448–1454

    Google Scholar 

  10. P. Cizek, The Microstructure Evolution and Softening Processes during High-Temperature Deformation of a 21Cr-10Ni-3Mo Duplex Stainless Steel, Acta Mater., 2016, 106, p 129–143

    CAS  Google Scholar 

  11. S. Patra, A. Ghosh, L.K. Singhal, A.S. Podder, J. Sood, V. Kumar, and D. Chakrabarti, Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture, Metall. Mater. Trans. A, 2017, 48(1), p 294–313

    CAS  Google Scholar 

  12. M. Faccoli and R. Roberti, Study of Hot Deformation Behaviour of 2205 Duplex Stainless Steel through Hot Tension Tests, J. Mater. Sci., 2013, 48(15), p 5196–5203

    CAS  Google Scholar 

  13. Y. Zhao, Y. Wang, S. Tang, W. Zhang, and Z. Liu, Development of a Novel Cr21 Lean Duplex Stainless Steel and Its Hot Deformation Behavior, J. Mater. Eng. Perform., 2019, 28(1), p 296–307

    CAS  Google Scholar 

  14. J.H. Kang, S.J. Heo, J. Yoo, and Y.C. Kwon, Hot Working Characteristics of S32760 Super Duplex Stainless Steel, J. Mech. Sci. Technol., 2019, 33(6), p 2633–2640

    Google Scholar 

  15. M.K. Mishra, I. Balasundar, A.G. Rao, B.P. Kashyap, and N. Prabhu, On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel, J. Mater. Eng. Perform., 2017, 26(2), p 802–812

    CAS  Google Scholar 

  16. M.H.F.J. Humphreys, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, p 55–56

    Google Scholar 

  17. A. Dehghan-Manshadi and P.D. Hodgson, Effect of δ-Ferrite Co-existence on Hot Deformation and Recrystallization of Austenite, J. Mater. Sci., 2008, 43(18), p 6272–6277

    CAS  Google Scholar 

  18. A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola, and I. Gutiérrez, Microstructural and Mechanical Behavior of a Duplex Stainless Steel under Hot Working Conditions, Metall. Mater. Trans. A, 1998, 29(12), p 2975–2986

    Google Scholar 

  19. L. Duprez, B.C.D. Cooman, and N. Akdut, High-Temperature Stress and Strain Partitioning in Duplex Stainless Steel, Z. Metallkd., 2002, 93(3), p 236–243

    CAS  Google Scholar 

  20. G.W. Fan, J. Liu, P.D. Han, and G.J. Qiao, Hot Ductility and Microstructure in Casted 2205 Duplex Stainless Steels, Mater. Sci. Eng. A, 2009, 515(1), p 108–112

    Google Scholar 

  21. Y. Yang, H. Qian, and Y. Su, Effect of Mn Addition on Deformation Behaviour of 23% Cr Low Nickel Duplex Stainless Steel, Mater. Charact., 2018, 145, p 606–618

    CAS  Google Scholar 

  22. A. Momeni, K. Dehghani, and X.X. Zhang, Mechanical and Microstructural Analysis of 2205 Duplex Stainless Steel under Hot Working Condition, J. Mater. Sci., 2012, 47(6), p 2966–2974

    CAS  Google Scholar 

  23. Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang, Investigation on Hot Deformation Behavior of 00Cr23Ni4N Duplex Stainless Steel under Medium–High Strain Rates, Mater. Charact., 2011, 62(2), p 198–203

    CAS  Google Scholar 

  24. V.D. Cojocaru, D. Răducanu, M.L. Angelescu, A.N. Vintilă, N. Şerban, I. Dan, E.M. Cojocaru, and I. Cinca, Influence of Solution Treatment Duration on Microstructural Features of an Industrial Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy, JOM, 2017, 69(8), p 1439–1445

    CAS  Google Scholar 

  25. K. Migiakis and G.D. Papadimitriou, Effect of Nitrogen and Nickel on the Microstructure and Mechanical Properties of Plasma Welded UNS S32760 Super-Duplex Stainless Steels, J. Mater. Sci., 2009, 44(23), p 6372–6383

    CAS  Google Scholar 

  26. P. Chandramohan, S.S. Mohamed Nazirudeen, and S.S. Ramakrishnan, Studies on Production and Thermo-Mechanical Treatment of 0.32% Nitrogen Alloyed Duplex Stainless Steel, J. Mater. Eng. Perform., 2008, 17(2), p 271–279

    CAS  Google Scholar 

  27. A. Pinol-Juez, A. Iza-Mendia, and I. Gutierrez, δ/γ Interface Boundary Sliding as a Mechanism for Strain Accommodation during Hot Deformation in a Duplex Stainless Steel, Metall. Mater. Trans. A, 2000, 31, p 1671–1677

    Google Scholar 

  28. F. Tehovnik, B. Arzensek, B. Arh, D. Skobir, B. Pirnar, and B. Zuzek, Microstructure Evolution in SAF 2507 Super Duplex Stainless Steel, Mater. Technol., 2011, 45(4), p 339–345

    CAS  Google Scholar 

  29. M. Ma, H. Ding, Z.-Y. Tang, J.-W. Zhao, Z.-H. Jiang, and G.-W. Fan, Effects of Temperature and Strain Rate on Flow Behavior and Microstructural Evolution of Super Duplex Stainless Steel under Hot Deformation, J. Iron Steel Res. Int., 2016, 23(3), p 244–252

    Google Scholar 

  30. Y.L. Fang, Z.Y. Liu, H.M. Song, and L.Z. Jiang, Hot Deformation Behavior of a New Austenite–Ferrite Duplex Stainless Steel Containing High Content of Nitrogen, Mater. Sci. Eng. A, 2009, 526(1), p 128–133

    Google Scholar 

  31. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel-Chromium Alloy (800H) during Hot Deformation, Mater. Sci. Eng. A, 2013, 585, p 71–85

    CAS  Google Scholar 

  32. J. Ryś and G. Cempura, Microstructure and Deformation Behavior of Metastable Duplex Stainless Steel at High Rolling Reductions, Mater. Sci. Eng. A, 2017, 700, p 656–666

    Google Scholar 

  33. S. Mandal, A.K. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure during Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43(6), p 2056–2068

    CAS  Google Scholar 

  34. B. Eghbali, Effect of Strain Rate on the Microstructural Development Through Continuous Dynamic Recrystallization in a Microalloyed Steel, Mater. Sci. Eng. A, 2010, 527(15), p 3402–3406

    Google Scholar 

  35. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258

    CAS  Google Scholar 

  36. Y. Liu, H. Yan, X. Wang, and M. Yan, Effect of Hot Deformation Mode on the Microstructure Evolution of Lean Duplex Stainless Steel 2101, Mater. Sci. Eng. A, 2013, 575, p 41–47

    CAS  Google Scholar 

  37. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Microstructural Evolution during Hot Deformation of Duplex Stainless Steel, Mater. Sci. Technol. Lond., 2007, 23(12), p 1478–1484

    CAS  Google Scholar 

  38. L. Duprez, B.C. De Cooman, and N. Akdut, Flow Stress and Ductility of Duplex Stainless Steel during High-Temperature Torsion Deformation, Metall. Mater. Trans. A, 2002, 33(7), p 1931–1938

    Google Scholar 

  39. S. Atamert and J.E. King, Elemental Partitioning and Microstructural Development in Duplex Stainless Steel Weld Metal, Acta Metall. Mater., 1991, 39(3), p 273–285

    CAS  Google Scholar 

  40. T.H. Chen and J.R. Yang, Effects of Solution Treatment and Continuous Cooling on σ-Phase Precipitation in a 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2001, 311(1), p 28–41

    Google Scholar 

  41. M.B. Cortie and J.H. Potgieter, The Effect of Temperature and Nitrogen Content on the Partitioning of Alloy Elements in Duplex Stainless Steels, Metall. Mater. Trans. A, 1991, 22(10), p 2173–2179

    Google Scholar 

  42. S. Wang, M. Zhang, H. Wu, and B. Yang, Study on the Dynamic Recrystallization Model and Mechanism of Nuclear Grade 316LN Austenitic Stainless Steel, Mater. Charact., 2016, 118, p 92–101

    CAS  Google Scholar 

  43. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39(6), p 1359–1370

    Google Scholar 

  44. M.S. Ghazani and B. Eghbali, Characterization of the Hot Deformation Microstructure of AISI, 321 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2018, 730, p 380–390

    CAS  Google Scholar 

  45. H. Jiang, J. Dong, M. Zhang, and Z. Yao, Evolution of Twins and Substructures during Low Strain Rate Hot Deformation and Contribution to Dynamic Recrystallization in Alloy 617B, Mater. Sci. Eng. A, 2016, 649, p 369–381

    CAS  Google Scholar 

  46. S.K. Pradhan, S. Mandal, C.N. Athreya, K.A. Babu, B. de Boer, and V.S. Sarma, Influence of Processing Parameters on Dynamic Recrystallization and the Associated Annealing Twin Boundary Evolution in a Nickel Base Superalloy, Mater. Sci. Eng. A, 2017, 700, p 49–58

    CAS  Google Scholar 

  47. Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang, Microstructure Evolution during Dynamic Recrystallization of Hot Deformed Superalloy 718, Mater. Sci. Eng. A, 2008, 486(1–2), p 321–332

    Google Scholar 

  48. X. Wang, E. Brünger, and G. Gottstein, The Role of Twinning during Dynamic Recrystallization in Alloy 800H, Scr. Mater., 2002, 46(12), p 875–880

    CAS  Google Scholar 

  49. F. Qin, H. Zhu, Z. Wang, X. Zhao, W. He, and H. Chen, Dislocation and Twinning Mechanisms for Dynamic Recrystallization of As-Cast Mn18Cr18N Steel, Mater. Sci. Eng. A, 2017, 684, p 634–644

    CAS  Google Scholar 

  50. T. Sakai and M. Ohashi, Dislocation Substructures Developed during Dynamic Recrystallisation in Polycrystalline Nickel, Mater. Sci. Techol. Lond., 1990, 6(12), p 1251–1257

    CAS  Google Scholar 

  51. W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, and T. Baudin, Influence of Stored Energy on Twin Formation during Primary Recrystallization, Mater. Sci. Eng. A, 2014, 589, p 112–118

    CAS  Google Scholar 

  52. H. Mirzadeh and A. Najafizadeh, The Rate of Dynamic Recrystallization in 17-4 PH Stainless Steel, Mater. Des., 2010, 31(10), p 4577–4583

    CAS  Google Scholar 

  53. S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt, Assessment of Dynamic Softening Mechanisms in Allvac® 718Plus™ by EBSD Analysis, Mater. Sci. Eng. A, 2011, 528(10), p 3754–3760

    Google Scholar 

  54. P. Cizek, B.P. Wynne, and W.M. Rainforth, EBSD Investigation of the Microstructure and Texture Characteristics of Hot Deformed Duplex Stainless Steel, J. Microsc., 2006, 222(2), p 85–96

    CAS  Google Scholar 

  55. R.Z. Wang and T.C. Lei, Dynamic Recrystallization of Ferrite in a Low Carbon Steel during Hot Rolling in the (F+A) Two-Phase Region, Scr. Metall. Mater., 1994, 31, p 1193–1196

    CAS  Google Scholar 

  56. A. Belyakov, Y. Kimura, and K. Tsuzaki, Microstructure Evolution in Dual-Phase Stainless Steel during Severe Deformation, Acta Mater., 2006, 54(9), p 2521–2532

    CAS  Google Scholar 

  57. B. Eghbali, A. Abdollah-zadeh, and P.D. Hodgson, Dynamic Softening of Ferrite during Large Strain Warm Deformation of a Plain-Carbon Steel, Mater. Sci. Eng. A, 2007, 462(1–2), p 259–263

    Google Scholar 

Download references

Acknowledgments

The research was supported by National Key R&D program of China (No. 2016YFB0300201), National High-tech R&D Program of China (No. 2015AA034301), Key Scientific Research Project in Shanxi Province (Grant Nos. MC2016-06, 201603D111004, 20181101014 and 201805D121003), Research Project Supported by Shanxi Scholarship Council of China (2017029) and Patent Promotion and Implement Found of Shanxi Province (20171003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hou Lifeng or Wei Yinghui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, W., Baosheng, L., Shoulu, Z. et al. Hot Deformation Behavior and Softening Mechanism of As-Cast S32750 Super Duplex Stainless Steel at Low and High Strain Rates. J. of Materi Eng and Perform 29, 727–738 (2020). https://doi.org/10.1007/s11665-020-04571-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04571-w

Keywords

Navigation