Skip to main content
Log in

Grain-Refined Microstructure and Hard Surface Layer Produced by SMRGT Process for Improved Corrosion Behavior of Mg-3Al-1Zn Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To improve the surface properties and performance, a grain-refined surface layer was produced on AZ31B Mg alloy by a newly developed surface nano-crystallization and hardening process called surface mechanical rolling grinding treatment (SMRGT). The grain size refinement and minimal surface hardening were confirmed by the microstructure observations, XRD results and microhardness tests and were attributed to the multipass small strain-induced plastic deformation of the material during the SMRGT process. A nano-grain surface layer (average grain size of ~ 100 nm) and a graded microhardness variation (average ~ 113 HV adjacent to surface) along the thickness direction were generated. The Ecorr values of the as-SMRGTed samples were − 1.43 ± 0.03 and − 1.42 ± 0.02 V, increasing by ~ 30-40 mV compared with the values of the as-received (AR) sample (− 1.46 ± 0.02 V), corresponding to icorr ranging from 3.0 × 10−5 to 1.0 × 10−5 and 5.0 × 10−6 A/cm2, respectively. Charge transfer resistance (Rct) increased from 93.4 to 292.4 and 578.3 Ω (~ 3-6 times) with the increasing number of SMRGT passes. The corrosion resistance improvement was attributed mainly to the dramatic strain-induced surface grain refinement and minimal surface hardening that give rise to a more smooth and densely packed surface state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.S. Wu, Z. Zhang, and F.H. Cao, Study on the Anodizing of AZ31 Magnesium Alloys in Alkaline Borate Solutions, Appl. Surf. Sci., 2007, 253(8), p 3893–3898

    Article  Google Scholar 

  2. J.E. Gray and B. Luan, Protective Coatings on Magnesium and its Alloys—A Critical Review, J. Alloy. Compd., 2002, 336(1–2), p 88–113

    Article  Google Scholar 

  3. H. Wang, Y. Estrin, and H. Fu, The Effect of Pre-processing and Grain Structure on the Biocorrosion and Fatigue Resistance of Magnesium Alloy AZ31, Adv. Eng. Mater., 2010, 9(11), p 967–972

    Article  Google Scholar 

  4. A. Loos, R. Rohde, and A. Haverich, In Vitro and in Vivo Biocompatibility Testing of Absorbable Metal Stents, Macromol. Symp., 2007, 253(1), p 103–108

    Article  Google Scholar 

  5. X. Gu, Y. Zheng, and Y. Cheng, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30(4), p 484–498

    Article  Google Scholar 

  6. M. Liu, P.J. Uggowitzer, and P. Schmutz, Calculated Phase Diagrams, Iron Tolerance Limits, and Corrosion of Mg-Al Alloys, JOM, 2008, 60(12), p 39–44

    Article  Google Scholar 

  7. K.U. Kainer, P.B. Srinivasan, and C. Blawert, Corrosion of Magnesium and its Alloys, Shreirs Corrosion, 2010, 51(8), p 2011–2041

    Article  Google Scholar 

  8. G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38(3), p 138–153

    Article  Google Scholar 

  9. M. Moravej and D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci., 2011, 12(7), p 4250–4270

    Article  Google Scholar 

  10. G. Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49(4), p 1696–1701

    Article  Google Scholar 

  11. P.W. Serruys, P. de Jaegere, and F. Kiemeneij, A comparison of Balloon-Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease, N. Engl. J. Med., 1994, 331(8), p 489–495

    Article  Google Scholar 

  12. S.R. Agnew and J.F. Nie, Preface to the Viewpoint Set On: The Current State of Magnesium Alloy Science and Technology, Scripta Mater., 2010, 63(7), p 671–673

    Article  Google Scholar 

  13. B.L. Mordike and T. Ebert, Magnesium Properties-Applications-Potential, Mater. Sci. Eng., A, 2001, 302(1), p 37–45

    Article  Google Scholar 

  14. K.Y. Chiu, M.H. Wong, and F.T. Cheng, Characterization and Corrosion Studies of Fluoride Conversion Coating on Degradable Mg Implants, Surf. Coat. Tech., 2007, 202(3), p 590–598

    Article  Google Scholar 

  15. G.L. Song and Z. Shi, Anodization and Corrosion of Magnesium (Mg) Alloys, Corros. Magnes. Alloy., 2001, 41, p 565–614

    Google Scholar 

  16. Y. Li, T. Zhang, and F. Wang, Effect of Microcrystallization on Corrosion Resistance of AZ91D Alloy, Electrochim. Acta, 2006, 51(14), p 2845–2850

    Article  Google Scholar 

  17. T. Balusamy, S. Kumar, and T.S.N.S. Narayanan, Effect of Surface Nanocrystallization on the Corrosion Behaviour of AISI, 409 Stainless Steel, Corros. Sci., 2010, 52(11), p 3826–3834

    Article  Google Scholar 

  18. P.S. Prevéy, J. Telesman, and T. Gabb, FOD Resistance and Fatigue Crack Arrest in Low Plasticity Burnished IN718, Proceedings of the 5th National High Cycle Fatigue Conf., Chandler, AZ. 2000, 3, p 7–9

  19. A.H. Clauer, Laser Shock Peening for Fatigue Resistance, Surface Performance of Titanium, JK Gregory, PA, 1996, p 217–230

  20. T. Watanabe and K. Hattori, Effect of ultrasonic shot peening on fatigue strength of high strength steel, Proceedings ICSP8, Garmisch-Partenkirchen, Germany, 2002, p 305–310

  21. T. Wang, J. Yu, and B. Dong, Surface Nanocrystallization Induced by Shot Peening and its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel, Surf. Coat. Tech., 2006, 200(16–17), p 4777–4781

    Article  Google Scholar 

  22. C. Op”t Hoog, N. Birbilis, and Y. Estrin, Corrosion of pure Mg as a Function of Grain Size and Processing Route and Dagger, Adv. Eng. Mater., 2010, 10(6), p 579–582

    Article  Google Scholar 

  23. N. Birbilis, K.D. Ralston, and S. Virtanen, Grain Character Influences on Corrosion of ECAPed Pure Magnesium, Corros. Eng. Sci. Techn., 2010, 45(3), p 224–230

    Article  Google Scholar 

  24. D. Song, A. Ma, and J. Jiang, Corrosion Behavior of Equal-Channel-Angular-Pressed Pure Magnesium in NaCl Aqueous Solution, Corros. Sci., 2010, 52(2), p 481–490

    Article  Google Scholar 

  25. G. Ben-Hamu, D. Eliezer, and L. Wagner, The Relation Between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy, J. Alloy. Compd., 2009, 468(1), p 222–229

    Article  Google Scholar 

  26. D. Song, A.B. Ma, and J.H. Jiang, Corrosion Behaviour of Bulk Ultra-Fine Grained AZ91D Magnesium Alloy Fabricated by Equal-Channel Angular Pressing, Corros. Sci., 2011, 53(1), p 362–373

    Article  Google Scholar 

  27. B.Q. Chen, G.F. Zhang, L.J. Zhang, and T.T. Xu, A New Approach of a Gradient Nanograined Surface Layer for Mg-3Al-1Zn Alloy Induced by SMRGT, Int. J. Adv. Manuf. Tech., 2018, 94, p 2659–2665

    Article  Google Scholar 

  28. W.T. Huo, W. Zhang, J.W. Lu, and Y.S. Zhang, Simultaneously Enhanced Strength and Corrosion Resistance of Mg-3Al-1Zn Alloy Sheets with Nano-Grained Surface Layer Produced by Sliding Friction Treatment, J. Alloy. Compd., 2017, 720, p 324–331

    Article  Google Scholar 

  29. A.M. Hassan and A.M. Maqableh, The Effects of Initial Burnishing Parameters on Non-Ferrous Components, J. Mater. Process Tech., 2000, 102(1–3), p 115–121

    Article  Google Scholar 

  30. M. Janeček and F. Chmelík, Mechanisms of Plastic Deformation in AZ31 Magnesium Alloy Investigated by Acoustic Emission and Electron Microscopy, Magnesium Alloys-Design, Processing and Properties. Frank Czerwinski (Ed.), ISBN: 978-953-307-520-4 InTech, 2011, p 43–68

  31. G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58(5), p p145–p151

    Article  Google Scholar 

  32. G. Song, D. StJohn, and T. Abbott, Corrosion Behaviour of a Pressure Die Cast Magnesium Alloy, J. Cast. Metal Res., 2005, 18(3), p 174–180

    Article  Google Scholar 

  33. G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55(13), p 4148–4161

    Article  Google Scholar 

  34. C. op’t Hoog, N. Birbilis, and M.X. Zhang, Surface Grain Size Effects on the Corrosion of Magnesium, Key Eng. Mater., 2008, 384, p 229–240

    Article  Google Scholar 

  35. H.S. Kim, G.H. Kim, H. Kim, and W.J. Kim, Enhanced Corrosion Resistance of High Strength Mg–3Al–1Zn Alloy Sheets with Ultrafine Grains in a Phosphate-Buffered Saline Solution, Corros. Sci., 2013, 74(3), p 139–148

    Article  Google Scholar 

  36. G.L. Makar and K. Kruger, Corrosion Studies of Rapidly Solidified Magnesium Alloys, J. Electrochem. Soc., 1990, 137(2), p 414–421

    Article  Google Scholar 

  37. G. Song, A. Atrens, and D. StJohn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39(10–11), p 1981–2004

    Article  Google Scholar 

  38. N. Pebre, T. Picaud, and M. Durprat, Evaluation of Corrosion Performance of Coated Steel by the Impedance Technique, Corros. Sci., 1989, 29(9), p 1073–1086

    Article  Google Scholar 

  39. G. Ruhi, O.P. Modi, and I.B. Singh, Corrosion Behaviour of Nano Structured Sol-Gel Alumina Coated 9Cr-1Mo Ferritic Steel in Chloride Bearing Environments, Surf. Coat. Tech., 2009, 204(3), p 359–365

    Article  Google Scholar 

  40. L. Tomcsanyi, K. Tomcsanyi, and I. Varga, Electrochemical Study of the Pitting Corrosion of Aluminium and its Alloys—II, Study of the Interaction of Chloride Ions with a Passive Film on Aluminium and Initiation of Pitting Corrosion, Electrochim. Acta, 1989, 34(6), p 855–859

    Article  Google Scholar 

  41. L. Lu, T. Liu, J. Chen, and Z. Wang, Microstructure and Corrosion Behavior of AZ31 Alloys Prepared by Dual Directional Extrusion, Mater. Des., 2012, 36, p 687–693

    Article  Google Scholar 

Download references

Acknowledgments

The Special Welding Teaching and Research section of State Key Laboratory for Mechanical Behavior of Materials of Xi’an Jiaotong University is acknowledged. The authors thank Dr. C. Xin, F. Zhou, Prof. L.J. Zhang and J. Peng for careful reading and valuable criticisms that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Xin, C., Zhang, G. et al. Grain-Refined Microstructure and Hard Surface Layer Produced by SMRGT Process for Improved Corrosion Behavior of Mg-3Al-1Zn Alloy. J. of Materi Eng and Perform 28, 1253–1262 (2019). https://doi.org/10.1007/s11665-019-3874-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3874-4

Keywords

Navigation