Skip to main content

Advertisement

Log in

CO2 Corrosion Behavior of Calcite-Covered API 5L X52 Carbon Steel in Aqueous Solutions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The CO2 corrosion of API 5L X52 steel in the presence and absence of calcite scale has been investigated. The scale was precipitated from a supersaturated solution at temperatures of 25 and 80 °C. The crystalline phase, cross section and surface morphologies of scale were studied by x-ray diffraction and scanning electron microscopy, respectively. It was found that the scale deposit mostly consisted of calcite. The corrosion behavior of bare and calcite-covered samples was investigated by electrochemical impedance spectroscopy and cyclic polarization techniques in aqueous CO2 solutions at 30, 50 and 70 °C. The presence of calcite scale on carbon steel surface decreased the adsorption of intermediate corrosion products as the scale uniformly covered the bare surface which resulted in reduction of general CO2 corrosion rate. The results of cyclic polarization tests revealed that the bare and calcite-covered samples were not susceptible to localized CO2 corrosion under conditions studied in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Huang, B. Brown, S. Nesic, S. Papavinasam, and D. Gould, Localized Corrosion of Mild Steel under Silica Deposits in Inhibited Aqueous CO2 solutions, CORROSION, NACE International, Houston, 2013

  2. A. Dugstad, Fundamental Aspects of CO2 Metal Loss Corrosion-Part 1: Mechanism, CORROSION, NACE International, Houston, 2006

  3. M. Kermani and A. Morshed, Carbon Dioxide Corrosion in Oil and Gas Production- a Compendium, Corrosion, 2003, 59(8), p 659–683

    Article  Google Scholar 

  4. G. Schmitt and M. Horstemeier, Fundamental Aspects of CO2 Metal Loss Corrosion-Part II: Influence of Different Parameters on CO2 Corrosion Mechanisms, CORROSION, NACE International, Houston, 2006

  5. S. Nešić, Key Issues Related to Modelling of Internal Corrosion of Oil and Gas pipelines-A review, Corros. Sci., 2007, 49(12), p 4308–4338

    Article  Google Scholar 

  6. V. Pandarinathan, K. Lepková, and W. Van Bronswijk, Chukanovite (Fe2(OH)2CO3) Identified as a Corrosion Product at Sand-Deposited Carbon Steel in CO2-Saturated Brine, Corros. Sci., 2014, 85, p 26–32

    Article  Google Scholar 

  7. J.R. Vera, D. Daniels, and M.H. Achour, Under Deposit Corrosion (UDC) in the Oil and Gas Industry: A Review of Mechanisms, Testing and Mitigation, CORROSION, NACE International, Houston, 2012

  8. M. Amiri and J. Moghadasi, The Prediction of Calcium Carbonate and Calcium Sulfate Scale Formation in Iranian Oilfields at Different Mixing Ratios of Injection Water with Formation Water, Pet. Sci. Technol., 2012, 30(3), p 223–236

    Article  Google Scholar 

  9. M. Amiri and J. Moghadasi, The Effect of Temperature on Calcium Carbonate Scale Formation in Iranian Oil Reservoirs using OLI, ScaleChem Software, Pet. Sci. Technol., 2012, 30(5), p 453–466

    Article  Google Scholar 

  10. M. Ciolkowski, A. Neville, X. Hu, E. Mavredaki, and L. Sanders, Influence of Brine with Different Supersaturation Ratio on Corrosion processes for Pipeline Material Carbon Steel X65, Scale Deposition and Performance of Combined Inhibitor, SPE International Conference and Workshop on Oilfield Corrosion, Society of Petroleum Engineers, 2012

  11. X. Li, B. Gao, Q. Yue, D. Ma, H. Rong, P. Zhao, and P. Teng, Effect of Six Kinds of Scale Inhibitors on Calcium Carbonate Precipitation in High Salinity Wastewater at High Temperatures, J. Environ. Sci., 2015, 29, p 124–130

    Article  Google Scholar 

  12. P.G. Koutsoukos and E. Kapetanaki, Mixed Calcium Carbonate and Calcium Sulfate Scale, CORROSION, NACE International, Houston, 2016

  13. F.B. Mainier, A.E.R. de Freitas, and A.A.M. Figueiredo, Acid Removal of Mineralized Incrustation in Petroleum Production Pipe, Int. J. Res. Rev. Appl. Sci., 2015, 23(1), p 65

    Google Scholar 

  14. D. Han, R. Jiang, and Y. Cheng, Mechanism of Electrochemical Corrosion of Carbon Steel Under Deoxygenated Water Drop and Sand Deposit, Electrochim. Acta, 2013, 114, p 403–408

    Article  Google Scholar 

  15. Y. Hou, C. Aldrich, K. Lepkova, and B. Kinsella, Detection of Under Deposit Corrosion in a CO2 Environment by Using Electrochemical Noise and Recurrence Quantification Analysis, Electrochim. Acta, 2018, 274, p 160–169

    Article  Google Scholar 

  16. A. Pedersen, K. Bilkova, E. Gulbrandsen, and J. Kvarekvål, CO2 Corrosion Inhibitor Performance in the Presence of Solids: Test Method Development, CORROSION, NACE International, Houston, 2008

  17. V. Pandarinathan, K. Lepková, S.I. Bailey, and R. Gubner, Evaluation of Corrosion Inhibition at Sand-Deposited Carbon Steel in CO2-Saturated Brine, Corros. Sci., 2013, 72, p 108–117

    Article  Google Scholar 

  18. Z. Yin, W. Zhao, Y. Feng, and S. Zhu, Characterisation of CO2 Corrosion Scale in Simulated Solution with Cl Ion Under Turbulent Flow Conditions, Corros. Eng., Sci. Technol., 2009, 44(6), p 453–461

    Article  Google Scholar 

  19. S. Navabzadeh Esmaeely, Y.-S. Choi, D. Young, and S. Nešić, Effect of Calcium on the Formation and Protectiveness of Iron Carbonate Layer in CO2 corrosion, Corrosion, 2013, 69(9), p 912–920

    Article  Google Scholar 

  20. L.M. Tavares, E.M. da Costa, J.J. de Oliveira Andrade, R. Hubler, and B. Huet, Effect of Calcium Carbonate on Low Carbon Steel Corrosion Behavior in Saline CO2 High Pressure Environments, Appl. Surf. Sci., 2015, 359, p 143–152

    Article  Google Scholar 

  21. S.N. Esmaeely, D. Young, B. Brown, and S. Nešić, Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO2 Corrosion of Mild Steel, Corrosion, 2016, 73(3), p 238–246

    Article  Google Scholar 

  22. S. Hoseinieh, T. Shahrabi, B. Ramezanzadeh, and M.F. Rad, Influence of Sweet Crude Oil on Nucleation and Corrosion Resistance of Calcareous Deposits, J. Mater. Eng. Perform., 2016, 25(11), p 4805–4811

    Article  Google Scholar 

  23. T. Zhu, L. Wang, W. Sun, M. Wang, J. Tian, Z. Yang, S. Wang, L. Xia, S. He, and Y. Zhou, The Role of Corrosion Inhibition in the Mitigation of CaCO3 Scaling on Steel Surface, Corros. Sci. 2018

  24. H. Mansoori, D. Young, B. Brown, S. Nesic, and M. Singer, Effect of CaCO3-Saturated Aqueous Solutions on CO2 Corrosion of Carbon Steel, Meeting Abstracts, The Electrochemical Society, 2018, pp 1065–1065

  25. Y. Hua, A. Shamsa, R. Barker, and A. Neville, Protectiveness, Morphology and Composition of Corrosion Products Formed on Carbon Steel in the Presence of Cl, Ca2+ and Mg2+ in High Pressure CO2 Environments, Appl. Surf. Sci., 2018, 455, p 667–682

    Article  Google Scholar 

  26. H.A. Stiff, Jr, and L.E. Davis, A Method for Predicting the Tendency of Oil Field Waters to Deposit Calcium Carbonate, J. Petrol. Technol., 1952, 4(09), p 213–216

    Article  Google Scholar 

  27. F. Farelas, M. Galicia, B. Brown, S. Nesic, and H. Castaneda, Evolution of Dissolution Processes at the Interface of Carbon Steel Corroding in a CO2 Environment Studied by EIS, Corros. Sci., 2010, 52(2), p 509–517

    Article  Google Scholar 

  28. G. Zhang and Y. Cheng, On the Fundamentals of Electrochemical Corrosion of X65 Steel in CO2-Containing Formation Water in the Presence of Acetic Acid in Petroleum Production, Corros. Sci., 2009, 51(1), p 87–94

    Article  Google Scholar 

  29. M. Heydari and M. Javidi, Corrosion Inhibition and Adsorption Behaviour of an Amido-imidazoline derivative on API, 5L X52 steel in CO2-saturated solution and Synergistic Effect of Iodide Ions, Corros. Sci., 2012, 61, p 148–155

    Article  Google Scholar 

  30. J.-B. Jorcin, M.E. Orazem, N. Pébère, and B. Tribollet, CPE Analysis by Local Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 51(8), p 1473–1479

    Article  Google Scholar 

  31. J. Sun, C. Sun, G. Zhang, X. Li, W. Zhao, T. Jiang, H. Liu, X. Cheng, and Y. Wang, Effect of O2 and H2S Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 system, Corros. Sci., 2016, 107, p 31–40

    Article  Google Scholar 

  32. J.M. Bockris, D. Drazic, and A. Despic, The Electrode Kinetics of the Deposition and Dissolution of Iron, Electrochim. Acta, 1961, 4(2–4), p 325–361

    Article  Google Scholar 

  33. Y. Tang, X. Guo, and G. Zhang, Corrosion Behaviour of X65 Carbon Steel in Supercritical-CO2 Containing H2O and O2 in Carbon Capture and Storage (CCS)Technology, Corros. Sci., 2017, 118, p 118–128

    Article  Google Scholar 

  34. S. Nesic, N. Thevenot, J.-L. Crolet, and D. Drazic, Electrochemical Properties of Iron Dissolution in the Presence of CO{sub 2}-Basics Revisited, NACE International, Houston, 1996

    Google Scholar 

  35. J. Huang, B. Brown, X. Jiang, B. Kinsella, and S. Nesic, Internal CO2 Corrosion of Mild Steel Pipelines Under Inert Solid Deposits, CORROSION, 2010

  36. C. Peng, J.P. Crawshaw, G.C. Maitland, and J.M. Trusler, Kinetics of Calcite Dissolution in CO2-Saturated Water at Temperatures Between (323 and 373) K and Pressures up to 13.8 MPa, Chem. Geol., 2015, 403, p 74–85

    Article  Google Scholar 

  37. H. Mansoori, D. Young, B. Brown, and M. Singer, Influence of Calcium and Magnesium Ions on CO2 Corrosion of Carbon Steel in Oil and Gas Production Systems-A Review, J. Natl. Gas Sci. Eng., 2018, 59, p 287–296

    Article  Google Scholar 

  38. X. Jiang, Y. Zheng, D. Qu, and W. Ke, Effect of Calcium Ions on Pitting Corrosion and Inhibition Performance in CO2 Corrosion of N80 steel, Corros. Sci., 2006, 48(10), p 3091–3108

    Article  Google Scholar 

  39. K. Katerina and R. Gubner, Development of Standard Test Method for Investigation of Under-Deposit Corrosion in Carbon Dioxide Environment and its Application in Oil and Gas Industry, CORROSION, NACE International, Houston, 2010

  40. J. Han, B. Brown, and S. Nešic, Investigation of the Galvanic Mechanism for Localized Carbon Dioxide Corrosion Propagation Using the Artificial Pit Technique, Corrosion, 2010, 66(9), p 095003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Javidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhrad, S., Javidi, M. CO2 Corrosion Behavior of Calcite-Covered API 5L X52 Carbon Steel in Aqueous Solutions. J. of Materi Eng and Perform 28, 1057–1066 (2019). https://doi.org/10.1007/s11665-019-3863-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3863-7

Keywords

Navigation