Skip to main content
Log in

Grain Size Effects on Static and Dynamic Strength of Ultrafine-Grained Al-Mg-Mn Alloy Produced by High-Pressure Torsion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the paper, the structure and static and dynamic mechanical properties of ultrafine-grained A5083 alloy (Al-Mg-Mn) produced by high-pressure torsion (HPT) are reported. The static yield stress and tensile strength were determined in tensile tests at a strain rate of ~ 10−3 s−1, and the dynamic yield stress and spall strength were calculated from free-surface velocity histories obtained during shock-wave loading at a strain rate of 105 s−1. The HPT technique provides strong grain refinement. The average grain size of the alloy after HPT is 100-180 nm and depends on the accumulated true strain. HPT significantly improves the static strength properties of the alloy. The static yield stress is increased by 360-390% and the static ultimate tensile strength by 166-182%. It is shown that the dynamic yield stress improved by 168-181%, while the dynamic spall strength was not improved by HPT. Moreover, the nanostructured alloy with a grain size of ~ 100 nm demonstrates the lowest spall strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61, p 782–817

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mater. Res. Lett., 2016, 4(1), p 1–21

    Article  CAS  Google Scholar 

  3. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured Aluminum Alloys Produced by Severe Plastic Deformation: New Horizons in Development, Mater. Sci. Eng., A, 2013, 560, p 1–24

    Article  CAS  Google Scholar 

  4. T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, The Contribution of Grain Boundary Sliding in Tensile Deformation of an Ultrafine-Grained Aluminum Alloy Having High Strength and High Ductility, J. Mater. Sci., 2015, 50, p 3549–3561

    Article  CAS  Google Scholar 

  5. R.Z. Valiev, M.Y. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, and T.G. Langdon, Unusual Super-Ductility at Room Temperature in an Ultrafine-Grained Aluminum Alloy, J. Mater. Sci., 2010, 45, p 4718–4724

    Article  CAS  Google Scholar 

  6. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper, Adv. Mater., 2006, 65, p 3472–3475

    Google Scholar 

  7. M.V. Markushev, E.V. Avtokratova, S.V. Krymskiy, and OSh Sitdikov, Effect of Precipitates on Nanostructuring and Strengthening of High-Strength Aluminum Alloys under High Pressure Torsion, J. Alloys Compd., 2018, 743, p 773–779

    Article  CAS  Google Scholar 

  8. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, and X. Sauvage, On the Origin of the Extremely High Strength of Ultrafine-Grained Al Alloys Produced by Severe Plastic Deformation, Scripta Mater., 2010, 63, p 949–952

    Article  CAS  Google Scholar 

  9. M. Ruppert, M. Strebl, H.W. Hoppel, and M. Goken, Mechanical Properties of Ultrafine-Grained AlZnMg(Cu)-Alloys AA7020 and AA7075 Processed by Accumulative Roll Bonding, J. Mater. Sci., 2015, 50, p 4422–4429

    Article  CAS  Google Scholar 

  10. E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, Extraordinary High-Strain Rate Superplasticity of Severely Deformed Al-Mg-Sc-Zr Alloy, Mater. Sci. Eng., 2012, A538, p 386–390

    Article  Google Scholar 

  11. Y. Estrin and A. Vinogradov, Fatigue Behaviour of Light Alloys with Ultrafine Grain Structure Produced by Severe Plastic Deformation: An Overview, Int. J. Fatigue, 2010, 32, p 898–907

    Article  CAS  Google Scholar 

  12. P.H.R. Pereira, Y.C. Wang, Y. Huang, and T.G. Langdon, Influence of Grain Size on the Flow Properties of an Al-Mg-Sc Alloy Over Seven Orders of Magnitude of Strain Rate, Mater. Sci. Eng., A, 2017, 685, p 367–376

    Article  CAS  Google Scholar 

  13. J. Jiang, J. Shi, Y. Yao, A. Ma, D. Song, D. Yang, J. Chen, and F. Lu, Dynamic Compression Properties of an Ultrafine-Grained Al-26wt.%Si Alloy Fabricated by Equal-Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24(5), p 2016–2024

    Article  CAS  Google Scholar 

  14. R. Kapoor, J.B. Singh, and J.K. Chakravartty, High Strain Rate Behavior of Ultrafine-Grained Al–1,5 Mg, Mater. Sci. Eng., A, 2008, 496, p 308–315

    Article  Google Scholar 

  15. F. Fereshteh-Saniee, S. Sepahi-Boroujeni, S. Lahmi, and G.H. Majzoobi, An Experimental Investigation on the Strain Rate Sensitivity of a Severely Deformed Aluminum Alloy, Exp. Mech., 2015, 55(3), p 569–576

    Article  CAS  Google Scholar 

  16. A.N. Petrova, I.G. Brodova, O.A. Plekhov, O.B. Naimark, and E.V. Shorokhov, Mechanical Properties and Energy Dissipation in Ultrafinegrained AMts and V95 Aluminum Alloys during Dynamic Compression, Tech. Phys., 2014, 59(7), p 989–996

    Article  CAS  Google Scholar 

  17. I.G. Brodova, A.N. Petrova, O.B. Naimark, O.A. Plekhov, S.V. Razorenov, and E.V. Shorokhov, The Influence of the Structure of Ultrafine-Grained Aluminium Alloys on Their Mechanical Properties under Dynamic Compression and Shock-Wave Loading, IOP Conf. Ser.: J. Phys., 2017, 894, p 012016

    Article  Google Scholar 

  18. S. Zhang, Y. Chun Wang, A.P. Zhilyaev, E. Korznikova, S. Li, G.I. Raab, and T.G. Langdon, Temperature and Strain Rate Dependence of Microstructural Evolution and Dynamic Mechanical Behaviour in Nanocrystalline Ti, Mater. Sci. Eng., 2015, A641, p 29–36

    Article  Google Scholar 

  19. O. Plekhov, V. Chudinov, V. Leont’ev, and O. Naimark, Experimental Investigations of the Laws of Energy Dissipation during Dynamic Deformation of Nanocrystalline Titanium, Tech. Phys. Lett., 2009, 351, p 92–95

    Article  Google Scholar 

  20. K.V. Ivanov, S.V. Razorenov, and G.V. Garkushin, Quasi-Static and Shock-Wave Loading of Ultrafine-Grained Aluminum: Effect of Microstructural Characteristics, J/ Mater. Sci., 2018, 53(20), p 14681–14693

    Article  CAS  Google Scholar 

  21. A.N. Petrova, I.G. Brodova, and S.V. Razorenov, Strength Properties and Structure of a Submicrocrystalline Al-Mg-Mn Alloy under Shock Compression, Phys. Metals Metall., 2017, 118(6), p 601–607

    Article  CAS  Google Scholar 

  22. I.G. Brodova, A.N. Petrova, S.V. Razorenov, and E.V. Shorokhov, Resistance of Submicrocrystalline Aluminum Alloys to High-Rate Deformation and Fracture after Dynamic Channel Angular Pressing, Phys. Metals Metall., 2015, 116(5), p 519–526

    Article  Google Scholar 

  23. R.L. Whelchel, N.N. Thadhani, T.H. Sanders, L.J. Kecskes, and C.L. Williams, Spall Properties of Al 5083 Plate Fabricated Using Equal-Channel Angular Pressing (ECAP) and Rolling, J. Phys: Conf. Ser., 2014, 500, p 112066

    Google Scholar 

  24. S.V. Razorenov, G.I. Kanel, G.V. Garkushin, and O.N. Ignatova, Resistance to Dynamic Deformation and Fracture of Tantalum with Different Grain and Defect Structures, Phys. Solid State, 2012, 54(4), p 790–797

    Article  CAS  Google Scholar 

  25. T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, and A.V. Utkin, Spall Fracture, Springer, New York, 2003

    Google Scholar 

  26. L.M. Barker and R.E. Hollenbach, Laser Interferometry for Measuring High Velocities of any Reflecting Surface, J. Appl. Phys., 1972, 43, p 4669–4675

    Article  Google Scholar 

  27. M.V. Markushev, C.C. Bampton, MYu Murashkin, and D.A. Hardwick, Structure and Properties of Ultra-Fine Grained Aluminum Alloys Produced by Severe Plastic Deformation, Mater. Sci. Eng., 1997, A234–236, p 927–931

    Article  Google Scholar 

Download references

Acknowledgments

Structural investigation and static tensile tests were carried out within the state assignment of Minobrnauki of Russia (theme “Struktura”, No. AAAA-A18-118020190116-6), supported in part by RFBR (Project 18-03-00102). The transmission electron microscopy investigations were carried out at the Center of Collaborative Access “Testing Center of Nanotechnologies and Advanced Materials” of the M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences. The dynamic experiments were performed using equipment of the Moscow Regional Explosion Research Center of Collective Use of the Russian Academy of Sciences under financial support of the Program of Basic Researches of Presidium of Russian Academy of Sciences (No. 13P) “Condensed matter and plasma under high energy density”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bobruk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A.N., Brodova, I.G., Razorenov, S.V. et al. Grain Size Effects on Static and Dynamic Strength of Ultrafine-Grained Al-Mg-Mn Alloy Produced by High-Pressure Torsion. J. of Materi Eng and Perform 29, 464–469 (2020). https://doi.org/10.1007/s11665-019-04511-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04511-3

Keywords

Navigation