Skip to main content
Log in

On the Effect of Quenching on Postweld Heat Treatment of Friction-Stir-Welded Aluminum 7075 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work focuses on the effect of postweld heat treatment (PWHT) on the mechanical properties and microstructural evolution of aluminum 7075 alloy processed via friction stir welding (FSW). FSW is known to be capable of grain refinement in the nugget zone (NZ). Two different quench media (water and air) were employed for PWHT. Regardless of the quench media, the PWHT led to the occurrence of grain growth in the NZ of the FSWed aluminum 7075 alloy. Abnormal grain growth occurred in the water quenched specimen. It is shown that ductility and strength of FSWed aluminum 7075 alloy are strongly dependent on the quenching rate. Changes in the mechanical properties and microstructure reveal that only at lower cooling rate this alloy is prone to the formation of precipitate-free zones (PFZs) in the vicinity of grain boundaries. Eventually, the PFZs deteriorate mechanical properties of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.M. Cepeda-Jiménez, J.M. García-Infanta, O.A. Ruano, and F. Carreño, Mechanical Properties at Room Temperature of an Al-Zn-Mg-Cu Alloy Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2011, 509(35), p 8649–8656. https://doi.org/10.1016/J.JALLCOM.2011.06.070

    Article  Google Scholar 

  2. X.-M. Li and M.J. Starink, Effect of Compositional Variations on Characteristics of Coarse Intermetallic Particles in Overaged 7000 Aluminium Alloys, Taylor & Francis, Routledge, 2013, https://doi.org/10.1179/026708301101509449

    Book  Google Scholar 

  3. R. Jayaganthan, H.-G. Brokmeier, B. Schwebke, and S.K. Panigrahi, Microstructure and Texture Evolution in Cryorolled Al 7075 Alloy, J. Alloys Compd., 2010, 496(1–2), p 183–188. https://doi.org/10.1016/J.JALLCOM.2010.02.111

    Article  CAS  Google Scholar 

  4. K. Shojaei, S.V. Sajadifar, and G.G. Yapici, On the Mechanical Behavior of Cold Deformed Aluminum 7075 Alloy at Elevated Temperatures, Mater. Sci. Eng., A, 2016, 670, p 81–89. https://doi.org/10.1016/j.msea.2016.05.113

    Article  CAS  Google Scholar 

  5. M. Prapas, N. Jennarong, and P. Woraphot, Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Friction Stir Welded SSM7075 Aluminium Alloy, J. Wuhan Univ. Technol. Sci. Ed., 2017, 32(6), p 1420–1425. https://doi.org/10.1007/s11595-017-1763-y

    Article  CAS  Google Scholar 

  6. P. Cavaliere and A. Squillace, High Temperature Deformation of Friction Stir Processed 7075 Aluminium Alloy, Mater. Charact., 2005, 55(2), p 136–142. https://doi.org/10.1016/J.MATCHAR.2005.04.007

    Article  CAS  Google Scholar 

  7. P. Sivaraj, D. Kanagarajan, and V. Balasubramanian, Effect of Post Weld Heat Treatment on Tensile Properties and Microstructure Characteristics of Friction Stir Welded Armour Grade AA7075-T651 Aluminium Alloy, Def. Technol., 2014, 10(1), p 1–8. https://doi.org/10.1016/J.DT.2014.01.004

    Article  CAS  Google Scholar 

  8. Y. Motohashi, T. Sakuma, A. Goloborodko, T. Ito, and G. Itoh, Grain Refinement Process in Commercial 7075-T6 Aluminum Alloy under Friction Stir Welding and Superplasticity, Materwiss. Werksttech., 2008, 39(4–5), p 275–278. https://doi.org/10.1002/mawe.200800288

    Article  CAS  Google Scholar 

  9. A.H. Feng, D.L. Chen, and Z.Y. Ma, Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy, Metall. Mater. Trans. A, 2010, 41(4), p 957–971. https://doi.org/10.1007/s11661-009-0152-3

    Article  CAS  Google Scholar 

  10. C.B. Fuller, M.W. Mahoney, M. Calabrese, and L. Micona, Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds, Mater. Sci. Eng., A, 2010, 527(9), p 2233–2240. https://doi.org/10.1016/J.MSEA.2009.11.057

    Article  Google Scholar 

  11. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, Dec 1991, GB Patent No 9125978, US Patent No 5,460,317 (October 8, 1995)

  12. C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53(8), p 2447–2458. https://doi.org/10.1016/J.ACTAMAT.2005.02.007

    Article  CAS  Google Scholar 

  13. A. Tamadon, D. Pons, K. Sued, D. Clucas, A. Tamadon, D.J. Pons, K. Sued, and D. Clucas, Thermomechanical Grain Refinement in AA6082-T6 Thin Plates under Bobbin Friction Stir Welding, Metals (Basel), 2018, 8(6), p 375. https://doi.org/10.3390/met8060375

    Article  CAS  Google Scholar 

  14. K. Hockauf, M.F.-X. Wagner, T. Halle, T. Niendorf, M. Hockauf, and T. Lampke, Influence of Precipitates on Low-Cycle Fatigue and Crack Growth Behavior in an Ultrafine-Grained Aluminum Alloy, Acta Mater., 2014, 80, p 250–263. https://doi.org/10.1016/J.ACTAMAT.2014.07.061

    Article  CAS  Google Scholar 

  15. Y. Lang, G. Zhou, L. Hou, J. Zhang, and L. Zhuang, Significantly Enhanced the Ductility of the Fine-Grained Al-Zn-Mg-Cu Alloy by Strain-Induced Precipitation, Mater. Des., 2015, 88, p 625–631. https://doi.org/10.1016/J.MATDES.2015.09.023

    Article  CAS  Google Scholar 

  16. W. Yang, H. Ding, Y. Mu, J. Li, and W. Zhang, Achieving High Strength and Ductility in Double-Sided Friction Stir Processing 7050-T7451 Aluminum Alloy, Mater. Sci. Eng., A, 2017, 707, p 193–198. https://doi.org/10.1016/J.MSEA.2017.09.028

    Article  CAS  Google Scholar 

  17. P.V. Kumar, G.M. Reddy, and K.S. Rao, Microstructure, Mechanical and Corrosion Behavior of High Strength AA7075 Aluminium Alloy Friction Stir Welds: Effect of Post Weld Heat Treatment, Def. Technol., 2015, 11(4), p 362–369. https://doi.org/10.1016/J.DT.2015.04.003

    Article  Google Scholar 

  18. A.A. Chegeni, P. Kapranos, A. Azadi Chegeni, and P. Kapranos, A Microstructural Evaluation of Friction Stir Welded 7075 Aluminum Rolled Plate Heat Treated to the Semi-Solid State, Metals (Basel), 2018, 8(1), p 41. https://doi.org/10.3390/met8010041

    Article  CAS  Google Scholar 

  19. D.A. Tanner and J.S. Robinson, Effect of Precipitation during Quenching on the Mechanical Properties of the Aluminium Alloy 7010 in the W-Temper, J. Mater. Process. Technol., 2004, 153–154, p 998–1004. https://doi.org/10.1016/J.JMATPROTEC.2004.04.226

    Article  Google Scholar 

  20. S. Liu, Q. Li, H. Lin, L. Sun, T. Long, L. Ye, and Y. Deng, Effect of Quench-Induced Precipitation on Microstructure and Mechanical Properties of 7085 Aluminum Alloy, Mater. Des., 2017, 132, p 119–128. https://doi.org/10.1016/J.MATDES.2017.06.054

    Article  CAS  Google Scholar 

  21. H. Li, J. Liu, W. Yu, H. Zhao, and D. Li, Microstructure Evolution of Al-Zn-Mg-Cu Alloy during Non-Linear Cooling Process, Trans. Nonferrous Met. Soc. China, 2016, 26(5), p 1191–1200. https://doi.org/10.1016/S1003-6326(16)64250-4

    Article  CAS  Google Scholar 

  22. Y. Zhang, B. Milkereit, O. Kessler, C. Schick, and P.A. Rometsch, Development of Continuous Cooling Precipitation Diagrams for Aluminium Alloys AA7150 and AA7020, J. Alloys Compd., 2014, 584, p 581–589. https://doi.org/10.1016/J.JALLCOM.2013.09.014

    Article  CAS  Google Scholar 

  23. S.T. Lim, S.J. Yun, and S.W. Nam, Improved Quench Sensitivity in Modified Aluminum Alloy 7175 for Thick Forging Applications, Mater. Sci. Eng., A, 2004, 371(1–2), p 82–90. https://doi.org/10.1016/S0921-5093(03)00653-1

    Article  CAS  Google Scholar 

  24. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms during Friction Stir Welding/Processing of Aluminum Alloys, Scr. Mater., 2008, 58(5), p 349–354. https://doi.org/10.1016/J.SCRIPTAMAT.2007.09.064

    Article  CAS  Google Scholar 

  25. M.A. Safarkhanian, M. Goodarzi, and S.M.A. Boutorabi, Effect of Abnormal Grain Growth on Tensile Strength of Al-Cu-Mg Alloy Friction Stir Welded Joints, J. Mater. Sci., 2009, 44(20), p 5452–5458. https://doi.org/10.1007/s10853-009-3735-x

    Article  CAS  Google Scholar 

  26. H. Aydın, A. Bayram, and İ. Durgun, An Investigation on Microstructure and Mechanical Properties of Post-Weld Heat-Treated Friction Stir Welds in Aluminum Alloy 2024-W, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2013, 227(4), p 649–662. https://doi.org/10.1177/0954406212452479

    Article  CAS  Google Scholar 

  27. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., D. Sleeman, Ed., Elsevier, 2004, p 121–167. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2

  28. H. Gleiter, The Mechanism of Grain Boundary Migration, Acta Metall., 1969, 17(5), p 565–573. https://doi.org/10.1016/0001-6160(69)90115-1

    Article  CAS  Google Scholar 

  29. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, W.H. Bingel, and R.A. Spurling, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29(7), p 1955–1964. https://doi.org/10.1007/s11661-998-0021-5

    Article  Google Scholar 

  30. M. Reimann, J. Goebel, and J.F. dos Santos, Microstructure and Mechanical Properties of Keyhole Repair Welds in AA 7075-T651 Using Refill Friction Stir Spot Welding, Mater. Des., 2017, 132, p 283–294. https://doi.org/10.1016/J.MATDES.2017.07.013

    Article  CAS  Google Scholar 

  31. M.J. Starink, Reduced Fracturing of Intermetallic Particles during Crack Propagation in Age Hardening Al-Based Alloys Due to PFZs, Mater. Sci. Eng., A, 2005, 390(1–2), p 260–264. https://doi.org/10.1016/J.MSEA.2004.09.053

    Article  Google Scholar 

  32. T.S. Srivatsan, D. Lanning, and K.K. Soni, Microstructure, Tensile Properties and Fracture Behaviour of an Al-Cu-Mg Alloy 2124, J. Mater. Sci., 1993, 28(12), p 3205–3213. https://doi.org/10.1007/BF00354237

    Article  CAS  Google Scholar 

  33. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effects of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36(1), p 69–75. https://doi.org/10.1016/S1359-6462(96)00344-2

    Article  CAS  Google Scholar 

  34. D.J. Lloyd and M.C. Chaturvedi, A Calorimetric Study of Aluminium Alloy AA-7075, J. Mater. Sci., 1982, 17(6), p 1819–1824. https://doi.org/10.1007/BF00540811

    Article  CAS  Google Scholar 

  35. Y. Liu, D.M. Jiang, and W.J. Li, The Effect of Multistage Ageing on Microstructure and Mechanical Properties of 7050 Alloy, J. Alloys Compd., 2016, 671, p 408–418. https://doi.org/10.1016/J.JALLCOM.2016.01.266

    Article  CAS  Google Scholar 

  36. G. Chu, L. Sun, C. Lin, and Y. Lin, Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy, J. Mater. Eng. Perform., 2017, 26(11), p 5425–5431. https://doi.org/10.1007/s11665-017-2998-7

    Article  CAS  Google Scholar 

  37. J.W. Evancho and J.T. Staley, Kinetics of Precipitation in Aluminum Alloys during Continuous Cooling. Metall. Trans., 1974, 5(1), p 43. https://doi.org/10.1007/bf02642924

    Article  CAS  Google Scholar 

  38. J.T. Staley, Quench Factor Analysis of Aluminium Alloys, Mater. Sci. Technol., 1987, 3(11), p 923–935. https://doi.org/10.1179/mst.1987.3.11.923

    Article  CAS  Google Scholar 

  39. M. Tiryakioğlu and R.T. Shuey, Quench Sensitivity of an Al-7 Pct Si-0.6 Pct Mg Alloy: Characterization and Modeling, Metall. Mater. Trans. B, 2007, 38(4), p 575–582. https://doi.org/10.1007/s11663-007-9027-4

    Article  CAS  Google Scholar 

  40. M.F. Ashby, Mechanisms of Deformation and Fracture, Adv. Appl. Mech., 1983, 23, p 117–177. https://doi.org/10.1016/S0065-2156(08)70243-6

    Article  Google Scholar 

  41. A.K. Vasudévan and R.D. Doherty, Grain Boundary Ductile Fracture in Precipitation Hardened Aluminum Alloys, Acta Metall., 1987, 35(6), p 1193–1219. https://doi.org/10.1016/0001-6160(87)90001-0

    Article  Google Scholar 

  42. M.-H. Ku, F.-Y. Hung, T.-S. Lui, and L.-H. Chen, Embrittlement Mechanism on Tensile Fracture of 7075 Al Alloy with Friction Stir Process (FSP), Mater. Trans., 2011, 52(1), p 112–117. https://doi.org/10.2320/matertrans.M2010315

    Article  CAS  Google Scholar 

  43. L. Jiang, J.K. Li, P.M. Cheng, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, and G. Yang, Microalloying Ultrafine Grained Al Alloys with Enhanced Ductility, Sci. Rep., 2015, 4(1), p 3605. https://doi.org/10.1038/srep03605

    Article  Google Scholar 

  44. T. Pardoen, D. Dumont, A. Deschamps, and Y. Brechet, Grain Boundary versus Transgranular Ductile Failure, J. Mech. Phys. Solids, 2003, 51(4), p 637–665. https://doi.org/10.1016/S0022-5096(02)00102-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Hessen State Ministry for Higher Education, Research and the Arts—Initiative for the Development of Scientific and Economic Excellence (LOEWE) for the Project ALLEGRO (Subprojects A2, A3 and B1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sajadifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadifar, S.V., Moeini, G., Scharifi, E. et al. On the Effect of Quenching on Postweld Heat Treatment of Friction-Stir-Welded Aluminum 7075 Alloy. J. of Materi Eng and Perform 28, 5255–5265 (2019). https://doi.org/10.1007/s11665-019-04252-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04252-3

Keywords

Navigation