Skip to main content
Log in

Strain-Hardening Behavior of Dual-Phase Steel under Multistress States

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The complexity and nonuniformity of microdeformation in high-strength dual-phase (DP) steels make it difficult to accurately predict the deformation processes in stamping. Here, in situ experiments under three kinds of stress states and a crystal plasticity finite element (CPFE) model were used to predict the strain-hardening behavior of DP steel. The microdeformation in various deformation stages was extracted from metallographs captured during in situ experiments to calculate the strain partitioning functions of each phase. Then, the multistress state mechanical behavior of DP steel was calculated based on the CPFE model combined with the strain partitioning functions of ferrite and martensite. The calculation results showed that (1) the CPFE model could accurately describe the load–stroke curves of the three experiments and that (2) the stress state had a significant effect on the strain partition ratio and the initial critical resolved shear stress of the material. In addition, the stress–strain curves of DP800 steel were predicted under six stress states; these curves did not coincide and had obvious deviations. Finally, the activity of the grain slip systems and the dislocation evolution were analyzed and discussed to predict the microdeformation and stress state effects on strain-hardening behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry, Arch. Civ. Mech. Eng., 2008, 8(2), p 103–117

    Article  Google Scholar 

  2. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, and K. Tsuzaki, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45, p 391–431

    Article  Google Scholar 

  3. N.H. Abid, R.K.A. Al-Rub, and A.N. Palazotto, Micromechanical Finite Element Analysis of the Effects of Martensite Morphology on the Overall Mechanical Behavior of Dual Phase Steel, Int. J. Solids Struct., 2017, 104, p 8–24

    Article  Google Scholar 

  4. E.H. Atzema, Formability of Auto Components, Automotive Steels, R. Rana and S.B. Singh, Ed., Woodhead Publishing, Cambridge, 2017, p 47–93

  5. J.N. Hall and J.R. Fekete, Steels for Auto Bodies: A General Overview, Automotive Steels, R. Rana and S.B. Singh, Ed., Woodhead Publishing, Cambridge, 2017, p 19–45

  6. J. Samei, D.E. Green, J. Cheng, and M.S. de Carvalho Lima, Influence of Strain Path on Nucleation and Growth of Voids in Dual Phase Steel Sheets, Mater. Des., 2016, 92, p 1028–1037

    Article  Google Scholar 

  7. S.P. Keeler, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Doctoral Dissertation, Massachusetts Institute of Technology, 1961

  8. G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop. SAE Transactions, 1968, p 380–387

  9. B. Erice, C.C. Roth, and D. Mohr, Stress-State and Strain-Rate Dependent Ductile Fracture of Dual and Complex Phase Steel, Mech. Mater., 2018, 116, p 11–32

    Article  Google Scholar 

  10. B. Ma, Z.G. Liu, Z. Jiang, X. Wu, K. Diao, and M. Wan, Prediction of Forming Limit in DP590 Steel Sheet Forming: An Extended Fracture Criterion, Mater. Des., 2016, 96, p 401–408

    Article  Google Scholar 

  11. C.P. Nikhare, Experiment and Predictions of Strain and Stress Based Failure Limits for Advanced High Strength Steel, Mater. Today Proc., 2018, 5(1), p 261–267

    Article  Google Scholar 

  12. C.D. Schwindt, M. Stout, L. Iurman, and J.W. Signorelli, Forming Limit Curve Determination of a DP-780 Steel Sheet, Proc. Mater. Sci., 2015, 8, p 978–985

    Article  Google Scholar 

  13. D. Zeng, Z.C. Xia, H.C. Shih, and M.F. Shi, Development of Shear Fracture Criterion for Dual-Phase Steel Stamping (No. 2009-01-1172). SAE Technical Paper

  14. H.C. Shih, M.F. Shi, D. Zeng, and Z.C. Xia, Development of Empirical Shear Fracture Criterion for AHSS, SAE Int. J. Mater. Manuf., 2010, 3(1), p 670–675

    Article  Google Scholar 

  15. W. Wang, M. Li, Y. Zhao, and X. Wei, Study on Stretch Bendability and Shear Fracture of 800 MPa Dual Phase Steel Sheet, Mater. Des. (1980–2015), 2014, 56, p 907–913

    Article  Google Scholar 

  16. B. Mohammed, T. Park, H. Kim, F. Pourboghrat, and R. Esmaeilpour, The Forming Limit Curve for Multiphase Advanced High Strength Steels Based on Crystal Plasticity Finite Element Modeling, Mater. Sci. Eng. A, 2018, 725, p 250–266

    Article  Google Scholar 

  17. B. Mohammed, T. Park, F. Pourboghrat, J. Hu, R. Esmaeilpour, and F. Abu-Farha, Multiscale Crystal Plasticity Modeling of Multiphase Advanced High Strength Steel, Int. J. Solids Struct., 2017, 151, p 57–75

    Article  Google Scholar 

  18. J. Kang, Y. Ososkov, J.D. Embury, and D.S. Wilkinson, Digital Image Correlation Studies for Microscopic Strain Distribution and Damage in Dual Phase Steels, Scripta Mater., 2007, 56(11), p 999–1002

    Article  Google Scholar 

  19. H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Local Plastic Strain Evolution in a High Strength Dual-Phase Steel, Mater. Sci. Eng. A, 2010, 527(18–19), p 5026–5032

    Article  Google Scholar 

  20. C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, Microstructural Banding Effects Clarified Through Micrographic Digital Image Correlation, Scripta Mater., 2010, 62(11), p 835–838

    Article  Google Scholar 

  21. C.C. Tasan, J.P. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In Situ Deformation Experiments and Crystal Plasticity Simulations, Int. J. Plast., 2014, 63, p 198–210

    Article  Google Scholar 

  22. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, Integrated Experimental-Simulation Analysis of Stress and Strain Partitioning in Multiphase Alloys, Acta Mater., 2014, 81, p 386–400

    Article  Google Scholar 

  23. J. Deng, The Research on Microscopic Deformation Behavior of Dual Phase Steels Based on Digital Image Correlation Method, Master Dissertation, Shanghai Jiao Tong University, 2015

  24. T.T. Huang, R.B. Gou, W.J. Dan, and W.G. Zhang, Strain-Hardening Behaviors of Dual Phase Steels with Microstructure Features, Mater. Sci. Eng. A, 2016, 672, p 88–97

    Article  Google Scholar 

  25. W.J. Dan, Z.Q. Lin, S.H. Li, and W.G. Zhang, Study on the Mixture Strain Hardening of Multi-Phase Steels, Mater. Sci. Eng. A, 2012, 552, p 1–8

    Article  Google Scholar 

  26. A. Fillafer, C. Krempaszky, and E. Werner, On Strain Partitioning and Micro-damage Behavior of Dual-Phase Steels, Mater. Sci. Eng. A, 2014, 614, p 180–192

    Article  Google Scholar 

  27. E.B. Marin and P.R. Dawson, On Modelling the Elasto-Viscoplastic Response of Metals Using Polycrystal Plasticity, Comput. Methods Appl. Mech. Eng., 1998, 165(1–4), p 1–21

    Article  Google Scholar 

  28. S. Groh, E.B. Marin, M.F. Horstemeyer, and H.M. Zbib, Multiscale Modeling of the Plasticity in an Aluminum Single Crystal, Int. J. Plast., 2009, 25(8), p 1456–1473

    Article  Google Scholar 

  29. A. Paquin, S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller, Micromechanical Modeling of the Elastic–Viscoplastic Behavior of Polycrystalline Steels, Int. J. Plast., 2001, 17(9), p 1267–1302

    Article  Google Scholar 

  30. R.J. Asaro and A. Needleman, Texture Development and Strain Hardening in Rate Dependent Polycrystals, Acta Metall., 1985, 33(6), p 923–953

    Article  Google Scholar 

  31. G.I. Taylor, Plastic Strain in Metals, J. Inst. Metals, 1938, 62, p 307–324

    Google Scholar 

  32. Y. Xu, W. Dan, C. Ren, and W. Zhang, Study of the Mechanical Behavior of Dual-Phase Steel Based on Crystal Plasticity Modeling Considering Strain Partitioning, Metals, 2018, 8(10), p 782

    Article  Google Scholar 

  33. Y. Lou and W.Y. Jeong, Anisotropic Ductile Fracture Criterion Based on Linear Transformation, Int. J. Plast., 2017, 93, p 3–25

    Article  Google Scholar 

  34. S.K. Paul and M. Mukherjee, Determination of Bulk Flow Properties of a Material from the Flow Properties of its Constituent Phases, Comput. Mater. Sci., 2014, 84, p 1–12

    Article  Google Scholar 

  35. H. Lyu, A. Ruimi, and H.M. Zbib, A Dislocation-Based Model for Deformation and Size Effect in Multi-Phase Steels, Int. J. Plast., 2015, 72, p 44–59

    Article  Google Scholar 

  36. J.H. Kim, D. Kim, F. Barlat, and M.G. Lee, Crystal Plasticity Approach for Predicting the Bauschinger Effect in Dual-Phase Steels, Mater. Sci. Eng. A, 2012, 539, p 259–270

    Article  Google Scholar 

  37. T.M. Hatem and M.A. Zikry, Dynamic Shear–Strain Localization and Inclusion Effects in Lath Martensitic Steels Subjected to High Pressure Loads, J. Mech. Phys. Solids, 2010, 58(8), p 1057–1072

    Article  Google Scholar 

  38. S. Queyreau, G. Monnet, and B. Devincre, Slip Systems Interactions in α-Iron Determined by Dislocation Dynamics Simulations, Int. J. Plast., 2009, 25(2), p 361–377

    Article  Google Scholar 

  39. K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, and F. Barlat, A Crystallographic Dislocation Model for Describing Hardening of Polycrystals During Strain Path Changes. Application to low carbon steel, Int. J. Plast., 2013, 46, p 54–69

    Article  Google Scholar 

  40. J. Huang, Y. Guo, D. Qin, Z. Zhou, D. Li, and Y. Li, Influence of Stress Triaxiality on the Failure Behavior of Ti-6Al-4V Alloy Under a Broad Range of Strain Rates, Theor. Appl. Fract. Mech., 2018, 97, p 48–61

    Article  Google Scholar 

  41. D.Q. Zou, S.H. Li, J. He, B. Gu, and Y.F. Li, The Deformation Induced Martensitic Transformation and Mechanical Behavior of Quenching and Partitioning Steels Under Complex Loading Process, Mater. Sci. Eng. A, 2018, 715, p 243–256

    Article  Google Scholar 

  42. Z. Cai, K. Diao, X. Wu, and M. Wan, Constitutive Modeling of Evolving Plasticity in High Strength Steel Sheets, Int. J. Mech. Sci., 2016, 107, p 43–57

    Article  Google Scholar 

  43. S.B. Zaman, F. Barlat, and J.H. Kim, Deformation-Induced Anisotropy of Uniaxially Prestrained Steel Sheets, Int. J. Solids Struct., 2018, 134, p 20–29

    Article  Google Scholar 

  44. J. Lee, J. Ha, H.J. Bong, D. Kim, and M.G. Lee, Evolutionary Anisotropy and Flow Stress in Advanced High Strength Steels Under Loading Path Changes, Mater. Sci. Eng. A, 2016, 672, p 65–77

    Article  Google Scholar 

  45. N. Deng, T. Kuwabara, and Y.P. Korkolis, On the Non-linear Unloading Behavior of a Biaxially Loaded Dual-Phase Steel Sheet, Int. J. Mech. Sci., 2018, 138, p 383–397

    Article  Google Scholar 

  46. H. Kim, F. Barlat, Y. Lee, S.B. Zaman, C.S. Lee, and Y. Jeong, A Crystal Plasticity Model for Describing the Anisotropic Hardening Behavior of Steel Sheets During Strain-Path Changes, Int. J. Plast., 2018, 111, p 85–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiao Dan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Dan, W., Ren, C. et al. Strain-Hardening Behavior of Dual-Phase Steel under Multistress States. J. of Materi Eng and Perform 28, 4882–4893 (2019). https://doi.org/10.1007/s11665-019-04236-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04236-3

Keywords

Navigation