Skip to main content

Advertisement

Log in

Effect of Rotational Speed on Microstructure and Mechanical Properties in Submerged Friction Stir Welding of ME20M Magnesium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Submerged friction stir welding of magnesium alloys has not been well investigated to date. ME20M is an important lightweight magnesium (Mg) alloy with enhanced yield strength and heat resistance that merits further research. In this paper, submerged friction stir welding of the ME20M Mg alloy was carried out using different parameters for the underwater cooling. Defect-free weld joints were produced, and the macrostructure, microstructure, tensile properties, and hardness were investigated. The results show that by increasing the rotational speed, the grain size of the weld nugget increased, the tensile strength of the joint decreased, and the microhardness of the different weld zones decreased. The finest obtained grain size was about 3.5 µm in the weld nugget at a rotational speed of 1100 rpm. The highest tensile strength achieved was 183.2 MPa, which was ~ 76.32% of the base metal. The highest and lowest hardness values of the weld joint were obtained at rotational speeds of 1100 and 1600 rpm, respectively, in the weld nugget and heat-affected zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023

    Article  CAS  Google Scholar 

  2. Z. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39(3), p 642–658

    Article  CAS  Google Scholar 

  3. Z.H. Chen, H.G. Yan, J.H. Chen, Y.J. Quan, H.M. Wang, and D. Chen, Magnesium Alloy, Chemical Industry Press, Beijing (in Chinese), 2004

    Google Scholar 

  4. K. Hantzsche, J. Wendt, K.U. Kainer, J. Bohlen, and D. Letzig, Mg Sheet: The Effect of Process Parameters and Alloy Composition on Texture and Mechanical Properties, JOM, 2009, 61(8), p 38–42

    Article  CAS  Google Scholar 

  5. T. Al-Samman and X. Li, Sheet Texture Modification in Magnesium-Based Alloys by Selective Rare Earth Alloying, Mater. Sci. Eng. A, 2011, 528(10), p 3809–3822

    Article  CAS  Google Scholar 

  6. Y. Chino, X. Huang, K. Suzuki, K. Sassa, and M. Mabuchi, Influence of Zn Concentration on Stretch Formability at Room Temperature of Mg-Zn-Ce Alloy, Mater. Sci. Eng. A, 2010, 528(2), p 566–572

    Article  CAS  Google Scholar 

  7. J. Min and J. Lin, An elastic Behavior and Phenomenological Modeling of mg ZEK100-O Alloy Sheet Under Cyclic Tensile Loading–Unloading, Mater. Sci. Eng. A, 2013, 561(3), p 174–182

    Article  CAS  Google Scholar 

  8. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, The Texture and Anisotropy of Magnesium-Zinc-Rare Earth Alloy Sheets, Acta Mater., 2007, 55(6), p 2101–2112

    Article  CAS  Google Scholar 

  9. H. Xu, J. Liu, and S. Xie, Magnesium Alloy Fabrication and Processing Technology, Metallurgical Industry Press, Beijing (in Chinese), 2007

    Google Scholar 

  10. S. Wang and D. Zhang, Microstructure and Mechanical Properties of Frictional Stirring Processed (FSP) MB8 Magnesium Alloy, SCNA, 2011, 31(1), p 83–86

    Google Scholar 

  11. W. Xu, Friction Stir Welding of Magnesium Alloy MB8, J. Mater. Eng., 2002, 8, p 35–36

    Google Scholar 

  12. L. Xing, L. Ke, D. Sun, and X. Zhou, Friction Stir Welding of MB8 Magnesium Alloy Sheet, Trans. China Weld. Inst., 2001, 22(6), p 18–20

    Google Scholar 

  13. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1), p 1–78

    Article  CAS  Google Scholar 

  14. C. Fang, D. Zhang, and Y. Li, Microstructures and Tensile Properties of Submerged Friction Stir Processed AZ91 Magnesium Alloy, J. Magn. Alloy, 2015, 3, p 203–209

    Article  CAS  Google Scholar 

  15. B. Darras and E. Kishta, Submerged Friction Stir Processing of AZ31 Magnesium Alloy, Mater. Des., 2013, 47(9), p 133–137

    Article  CAS  Google Scholar 

  16. X. Luo, G. Cao, W. Zhang, C. Qiu, and D. Zhang, Ductility Improvement of an AZ61 Magnesium Alloy through Two-Pass Submerged Friction Stir Processing, Materials, 2017, 10(3), p p253

    Article  CAS  Google Scholar 

  17. J.P. Ramulu, R.G. Narayanan, S.V. Kailas et al., Internal Defect and Process Parameter Analysis during Friction Stir Welding of Al 6061 Sheets, Int. J. Adv. Manuf. Technol., 2013, 65(9–12), p 1515–1528

    Article  Google Scholar 

  18. P. Vilaça and W. Thomas, Friction Stir Welding Technology, Sci. Technol. Rev., 2012, 8, p 85–124

    Google Scholar 

  19. J. Rasti, Study of the Welding Parameters Effect on the Tunnel Void Area during Friction Stir Welding of 1060 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2018, 97, p 2221–2230

    Article  Google Scholar 

  20. T.G. Santos, R.M. Miranda, and P. Vilaça, Friction Stir Welding Assisted by Electrical Joule Effect, J. Mater. Process. Technol., 2014, 10, p 2127–2133

    Article  CAS  Google Scholar 

  21. Y. Huang, Y. Wang, X. Meng et al., Dynamic Recrystallization and Mechanical Properties of Friction Stir Processed Mg-Zn-Y-Zr Alloys, J. Mater. Process. Technol., 2017, 249, p 331–338

    Article  CAS  Google Scholar 

  22. L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57(2), p 326–334

    Article  CAS  Google Scholar 

  23. V.V. Patel, V.J. Badheka, and A. Kumar, Effect of Velocity Index on Grain Size of Friction Stir Processed Al-Zn-Mg-Cu Alloy, Procedia Technol., 2016, 23, p 537–542

    Article  Google Scholar 

  24. M.R. Barnett, A Rationale for the Strong Dependence of Mechanical Twinning on Grain Size, Scr. Mater., 2008, 59(7), p 696–698

    Article  CAS  Google Scholar 

  25. H.T. Serindag, B.G. Kiral, H.T. Serindag, and B.G. Kiral, Friction Stir Welding of AZ31 Magnesium Alloys—A Numerical and Experimental Study, Lat. Am. J. Solids Struct., 2016, 14(1), p 113–130

    Article  Google Scholar 

  26. S.S. Kumar, N. Murugan, K.K. Ramachandran, Effect of Friction Stir Welding on Mechanical and Microstructural Properties of AISI 316L Stainless Steel Butt Joints. Weld. World, 2019, 63, p 137–150

    Article  CAS  Google Scholar 

  27. P. Schempp, C.E. Cross, A. Pittner, and M. Rethmeier, Influence of Solute Content and Solidification Parameters on Grain Ref inement of Aluminum Weld Metal, Metall. Mater. Trans. A, 2013, 44(7), p 3198–3210

    Article  CAS  Google Scholar 

  28. G. Sharma and D.K. Dwivedi, Study on Microstructure and Mechanical Properties of Dissimilar Steel Joint Developed Using Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2016, 88(5–8), p 1–9

    Google Scholar 

  29. Z.L. Hu, M.L. Dai, and Q. Pang, Influence of Welding Combined Plastic Forming on Microstructure Stability and Mechanical Properties of Friction Stir-Welded Al-Cu Alloy, J. Mater. Eng. Perform., 2018, 27, p 4036–4042

    Article  CAS  Google Scholar 

  30. H. Zhang, H. Liu, and L. Yu, Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone, J. Mater. Eng. Perform., 2012, 21(7), p 1182–1187

    Article  CAS  Google Scholar 

  31. G. Ran, J.E. Zhou, and Q.G. Wang, Precipitates and Tensile Fracture Mechanism in a Sand Cast A356 Aluminum Alloy, J. Mater. Process. Technol., 2008, 207(1), p 46–52

    Article  CAS  Google Scholar 

  32. M. Lentz, J. Nissen, C. Fahrenson, S.C. Vogel, and W. Reimers, Macro- and Microtexture Evolution of an Extruded Mg-Mn-Ce Alloy during Annealing, Mater. Sci. Eng. A, 2016, 655, p 17–26

    Article  CAS  Google Scholar 

  33. P. Carlone, A. Astarita, F. Rubino, and N. Pasquino, Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy, Metall. Mater. Trans. B, 2016, 47(2), p 1–7

    Article  CAS  Google Scholar 

  34. F. Liu, L. Fu, and H. Chen, Microstructure Evolution and Mechanical Properties of High-Speed Friction Stir Welded Aluminum Alloy Thin Plate Joints, J. Mater. Eng. Perform., 2018, 27(7), p 3590–3599

    Article  CAS  Google Scholar 

  35. L. Zhou, H.J. Liu, and Q.W. Liu, Effect of Rotation Speed on Microstructure and Mechanical Properties of Ti-6Al-4 V Friction Stir Welded Joints, Mater. Des. (1980-2015), 2010, 31(5), p 2631–2636

    Article  CAS  Google Scholar 

  36. S. Li, Y. Chen, X. Zhou, J. Kang, Y. Huang, and H. Deng, High-Strength Titanium Alloy/Steel Butt Joint Produced Via Friction Stir Welding, Mater. Lett., 2019, 234, p 155–158

    Article  CAS  Google Scholar 

  37. L. Commin, M. Dumont, R. Rotinat, F. Pierron, J.E. Masse, and L. Barrallier, Influence of the Microstructural Changes and Induced Residual Stresses on Tensile Properties of Wrought Magnesium Alloy Friction Stir Welds, Mater. Sci. Eng. A, 2012, 551(31), p 288–292

    Article  CAS  Google Scholar 

  38. Y. Wang, Y. Huang, X. Meng, L. Wan, and J. Feng, Microstructural Evolution and Mechanical Properties of Mg-Zn-Y-Zr Alloy during Friction Stir Processing, J. Alloys Compd., 2017, 696, p 875–883

    Article  CAS  Google Scholar 

  39. R.D. Fu, Z.Q. Sun, R.C. Sun, Y. Li, H.J. Liu, and L. Liu, Improvement of Weld Temperature Distribution and Mechanical Properties of 7050 Aluminum Alloy Butt Joints by Submerged Friction Stir Welding, Mater. Des., 2011, 32(10), p 4825–4831

    Article  CAS  Google Scholar 

  40. S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, and H. Kokawa, Tensile Behavior of Friction-Stir Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2017, 679, p 272–281

    Article  CAS  Google Scholar 

  41. W.H. Hartt and R.E. Reed-Hill, Internal Deformation and Fracture Of Second-Order 1011-1012 Twins in Magnesium, Trans. Metall. Soc. AIME, 1968, 242, p 1127–1132

    CAS  Google Scholar 

  42. D. Ando, J. Koike, and Y. Sutou, Relationship Between Deformation Twinning and Surface Step Formation in AZ31 Magnesium Alloys, Acta Mater., 2010, 58(13), p 4316–4324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study work of this paper is supported by the National Natural Science Foundation of China (Grant No. 51475232). This is a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Shen, Y., Guo, C. et al. Effect of Rotational Speed on Microstructure and Mechanical Properties in Submerged Friction Stir Welding of ME20M Magnesium Alloy. J. of Materi Eng and Perform 28, 4610–4619 (2019). https://doi.org/10.1007/s11665-019-04205-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04205-w

Keywords

Navigation