Skip to main content

Advertisement

Log in

Effect of Anisotropy on Microstructures and Mechanical Properties of Rolled Ti/Al/Mg/Al/Ti Laminates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

TA2/5052Al/AZ31/5052Al/TA2 five-ply laminates were fabricated by hot rolling, and the effect of anisotropy on their microstructures and mechanical properties was studied. After rolling, the Mg/Al and Al/Ti interfaces were both closely connected, but the interfacial shapes were totally different. For the Mg layer microstructures in the middle area, regardless of the direction, dynamic recrystallized (DRXed) grains appeared around the deformation bands. However, twins and a shear zone appeared in the RD sample; the twins decreased in the sample along the 45° angle, and no twins appeared in the TD sample. The Ti layer showed equiaxed grains in different directions, which were attributed to the ability of Ti alloy to anti-deform. The tensile testing results showed that the fracture of the Ti/Al/Mg/Al/Ti laminates can be divided into four stages. The laminate had an ultimate tensile strength of 434 MPa and excellent elongation along the rolling direction (RD), which were attributed to its DRXed grains and twins. In conclusion, the laminates had significant anisotropy due to the presence of Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Aghion, B. Bronfin, and D. Eliezer, The Role of the Magnesium Industry in Protecting the Environment, J. Mater. Process. Technol., 2001, 117(3), p 381–385

    Article  Google Scholar 

  2. A. Macwan, X.Q. Jiang, C. Li, and D.L. Chen, Effect of Annealing on Interface Microstructures and Tensile Properties of Rolled Al/Mg/Al Tri-layer Clad Sheets, Mater. Sci. Eng. A, 2013, 587, p 344–351

    Article  Google Scholar 

  3. N. Zhang, W. Wang, X. Cao, and J. Wu, The Effect of Annealing on the Interface Microstructure and Mechanical Characteristics of AZ31B/AA6061 Composite Plates Fabricated by Explosive Welding, Mater. Des., 2015, 65, p 1100–1109

    Article  Google Scholar 

  4. P.D. Motevalli and B. Eghbali, Microstructure and Mechanical Properties of Tri-metal Al/Ti/Mg Laminated Composite Processed by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2015, 628, p 135–142

    Article  Google Scholar 

  5. J.L. Murray, The Mg-Ti (Magnesium-Titanium) System, Bull. Alloy Phase Diagr., 1986, 7(3), p 245–248

    Article  Google Scholar 

  6. H. Yu, C. Lu, A.K. Tieu, H. Li, A. Godbole, and C. Kong, Annealing Effect on Microstructure and Mechanical Properties of Al/Ti/Al Laminate Sheets, Mater. Sci. Eng. A, 2016, 660, p p195–204

    Article  Google Scholar 

  7. Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, and X. Huang, Laminated Ti-Al Composites: Processing, Structure and Strength, Mater. Sci. Eng. A, 2016, 673, p 572–580

    Article  Google Scholar 

  8. X.P. Zhang, T.H. Yang, S. Castagne, and J.T. Wang, Microstructure; Bonding Strength and Thickness Ratio of Al/Mg/Al Alloy Laminated Composites Prepared by Hot Rolling, Mater. Sci. Eng. A, 2011, 528(4–5), p 1954–1960

    Article  Google Scholar 

  9. Z. Chen, D. Wang, X. Cao, W. Yang, and W. Wang, Influence of Multi-pass Rolling and Subsequent Annealing on the Interface Microstructure and Mechanical Properties of the Explosive Welding Mg/Al Composite Plates, Mater. Sci. Eng. A, 2018, 723, p 97–108

    Article  Google Scholar 

  10. A. Panteli, Y.C. Chen, D. Strong, X. Zhang, and P.B. Prangnell, Optimization of Aluminium-to-Magnesium Ultrasonic Spot Welding, JOM, 2012, 64(3), p 414–420

    Article  Google Scholar 

  11. H.Y. Wang, L.M. Liu, and Z.Y. Jia, The Influence of Adhesive on the Al Alloy in Laser Weld Bonding Mg-Al Process, J. Mater. Sci., 2011, 46(16), p 5534–5540

    Article  Google Scholar 

  12. A. Macwan, V.K. Patel, X.Q. Jiang, C. Li, S.D. Bhole, and D.L. Chen, Ultrasonic Spot Welding of Al/Mg/Al Tri-layered Clad Sheets, Mater. Des., 2014, 62, p 344–351

    Article  Google Scholar 

  13. Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Microstructure and Properties of Magnesium AZ31B-Aluminum 7075 Explosively Welded Composite Plate, Mater. Sci. Eng. A, 2009, 527(9), p 2241–2245

    Article  Google Scholar 

  14. X. Li, W. Liang, X. Zhao, Y. Zhang, X. Fu, and F. Liu, Bonding of Mg and Al with Mg-Al Eutectic Alloy and Its Application in Aluminum Coating on Magnesium, J. Alloys Compd., 2009, 471(1–2), p 408–411

    Article  Google Scholar 

  15. T. Matsumae, Y. Kurashima, and H. Takagi, Surface Activated Bonding of Ti/Au and Ti/Pt/Au Films After Vacuum Annealing for MEMS Packaging, Microelectron. Eng., 2018, 197, p 76–82

    Article  Google Scholar 

  16. L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, and H.Q. Ye, Influence of Heat Treatment on Interface of Cu/Al Bimetal Composite Fabricated by Cold Rolling, Composites Part B, 2011, 42(6), p p1468–1473

    Article  Google Scholar 

  17. C.Y. Liu, Q. Wang, Y.Z. Jia, R. Jing, B. Zhang, M.Z. Ma, and R.P. Liu, Microstructures and Mechanical Properties of Mg/Mg and Mg/Al/Mg Laminated Composites Prepared Via Warm Roll Bonding, Mater. Sci. Eng. A, 2012, 556, p 1–8

    Article  Google Scholar 

  18. H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and Mechanical Properties of the Mg/Al Multilayer Fabricated by Accumulative Roll Bonding (ARB) at Ambient Temperature, Mater. Sci. Eng. A, 2012, 543, p 249–256

    Article  Google Scholar 

  19. K.S. Lee, Y.S. Lee, and Y.N. Kwon, Influence of Secondary Warm Rolling on the Interface Microstructure and Mechanical Properties of a Roll-Bonded Three-Ply Al/Mg/Al Sheet, Mater. Sci. Eng. A, 2014, 606, p 205–213

    Article  Google Scholar 

  20. H. Xiao, Z. Qi, C. Yu, and C. Xu, Preparation and Properties for Ti/Al Clad Plates Generated by Differential Temperature Rolling, J. Mater. Process. Technol., 2017, 249, p 285–290

    Article  Google Scholar 

  21. M. Ma, P. Huo, W.C. Liu, G.J. Wang, and D.M. Wang, Microstructure and Mechanical Properties of Al/Ti/Al Laminated Composites Prepared by Roll Bonding, Mater. Sci. Eng. A, 2015, 636, p 301–310

    Article  Google Scholar 

  22. N. Kahraman, B. Gulenc, and F. Findik, Corrosion and Mechanical-Microstructural Aspects of Dissimilar Joints of Ti-6Al-4 V and Al Plates, Int. J. Impact Eng, 2007, 34(8), p 1423–1432

    Article  Google Scholar 

  23. L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of Intermetallic Layer in Multi-laminated Ti/Al Diffusion Couples, Mater. Sci. Eng. A, 2006, 435–436, p 638–647

    Article  Google Scholar 

  24. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Microstructure and Mechanical Properties of the Mg/Al Laminated Composite Fabricated by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2010, 527(13–14), p 3073–3078

    Article  Google Scholar 

  25. J.-S. Kim, K.S. Lee, Y.N. Kwon, B.-J. Lee, Y.W. Chang, and S. Lee, Improvement of Interfacial Bonding Strength in Roll-Bonded Mg/Al Clad Sheets Through Annealing and Secondary Rolling Process, Mater. Sci. Eng. A, 2015, 628, p 1–10

    Article  Google Scholar 

  26. J.-G. Luo and V.L. Acoff, Using Cold Roll Bonding and Annealing to Process Ti/Al Multi-layered Composites from Elemental Foils, Mater. Sci. Eng. A, 2004, 379(1–2), p 164–172

    Article  Google Scholar 

  27. N. Bontcheva, G. Petzov, and L. Parashkevova, Thermomechanical Modelling of Hot Extrusion of Al-Alloys, Followed by Cooling on the Press, Comput. Mater. Sci., 2006, 38(1), p p83–p89

    Article  Google Scholar 

  28. U.F.H. Suhuddin, V. Fischer, and J.F. dos Santos, The Thermal Cycle During the Dissimilar Friction Spot Welding of Aluminum and Magnesium Alloy, Scr. Mater., 2013, 68(1), p 87–90

    Article  Google Scholar 

  29. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199–1207

    Article  Google Scholar 

  30. X. Huang, K. Suzuki, and Y. Chino, Improvement of Stretch Formability of Pure Titanium Sheet by Differential Speed Rolling, Scr. Mater., 2010, 63(5), p 473–476

    Article  Google Scholar 

  31. M. Ma, X. Meng, and W.C. Liu, Microstructure and Mechanical Properties of Ti/Al/Ti Laminated Composites Prepared by Hot Rolling, J. Mater. Eng. Perform., 2017, 26(7), p 3569–3578

    Article  Google Scholar 

  32. X.P. Zhang, T.H. Yang, J.Q. Liu, X.F. Luo, and J.T. Wang, Mechanical Properties of an Al/Mg/Al Trilaminated Composite Fabricated by Hot Rolling, J. Mater. Sci., 2010, 45(13), p p3457–p3464

    Article  Google Scholar 

  33. G.S. Was and T. Foecke, Deformation and Fracture in Microlaminates, Thin Solid Films, 1996, 286(1–2), p 1–31

    Article  Google Scholar 

  34. M.C. Chen, H.C. Hsieh, and W. Wu, The Evolution of Microstructures and Mechanical Properties During Accumulative Roll Bonding of Al/Mg Composite, J. Alloys Compd., 2006, 416(1–2), p 169–172

    Article  Google Scholar 

  35. G. Nussbaum, P. Sainfort, G. Regazzoni, and H. Gjestland, Strengthening Mechanisms in the Rapidly Solidified AZ 91 Magnesium Alloy, Scr. Metall., 1989, 23(7), p 1079–1084

    Article  Google Scholar 

  36. T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, and F. Pan, Grain Refining and Mechanical Properties of AZ31 Alloy Processed by Accumulated Extrusion Bonding, J. Alloys Compd., 2018, 745, p 599–608

    Article  Google Scholar 

  37. Q. Jin, S.-Y. Shim, and S.-G. Lim, Correlation of Microstructural Evolution and Formation of Basal Texture in a Coarse Grained Mg-Al Alloy During Hot Rolling, Scr. Mater., 2006, 55(9), p 843–846

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Science and Technology Major Project of Shanxi province under Grant No. 20181101008; Shanxi provincial Youth Fund of Shanxi Province under Grant No. 201801D221101; the National Natural Science Foundation of China under Grant Nos. U1710254, 51274149, U1810208 and 51474152; Shanxi Institute of Energy under Grant No. ZY-2017003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huihui Nie, Xianrong Li or Wei Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Nie, H., Wang, T. et al. Effect of Anisotropy on Microstructures and Mechanical Properties of Rolled Ti/Al/Mg/Al/Ti Laminates. J. of Materi Eng and Perform 28, 4143–4151 (2019). https://doi.org/10.1007/s11665-019-04172-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04172-2

Keywords

Navigation