Skip to main content

Advertisement

Log in

Creep Deformation and Rupture Behavior of P92 Steel Weld Joint Fabricated by NG-TIG Welding Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The creep deformation and rupture behavior of P92 steel weld joint fabricated by narrow-gap TIG (NG-TIG) welding process have been investigated at 923 K over a stress range of 80-140 MPa. The prior-austenite grain size, M23C6 precipitate size and hardness have been found to vary significantly in the weld joint. The reduction in hardness from weld metal to base metal with a trough at the outer edge of heat-affected zone (HAZ) has been observed. Coarsening of M23C6 precipitate, recovery of martensite lath dislocation structure and formation of subgrain structure led to lower hardness in the intercritical HAZ. The creep rupture life of NG-TIG weld joint was lower than the base metal, the difference in creep rupture life between base metal and weld joint has been increased significantly with decrease in applied stress. The fracture location in the joint changed from base metal at high-stress regime to the fine grain (FG) HAZ (Type IV cracking) under lower stress level. Fracture in the FGHAZ evidenced the significant reduction in ductility, localized deformation and extensive localized cavitation. Extensive Laves phase formation with significant loss of solution strengthening contribution from tungsten and coarsening of M23C6 precipitate with prolonged creep exposure led to reduction in hardness and more extensive cavitation in the FGHAZ resulting in premature Type IV failure of the weld joint. Weld strength reduction factor about 0.59 has been evaluated for 105 h at 923 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz, Microstructural Stability and Creep Rupture Strength of the Martensitic steel P92 for Advanced Power Plant, Acta Mater., 1997, 45(12), p 4901–4907

    Article  Google Scholar 

  2. K. Maruyama, K. Sawada, and J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, Iron Steel Inst. Jpn. Int., 2001, 41(6), p 641–653

    Article  Google Scholar 

  3. V. Dudko, A. Belyakov, D. Molodov, and R. Kaibyshev, Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct Cr Heat Resistant Steel During Creep, Metall. Mater. Trans. A, 2013, 44, p S162–S172

    Article  Google Scholar 

  4. I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev, Microstructure Evolution in an Advanced 9 pct Cr Martensitic Steel During Creep at 923 K (650 °C), Metall. Mater. Trans. A, 2013, 44, p S128–S135

    Article  Google Scholar 

  5. F. Abe, Creep Rates and Strengthening Mechanisms in Tungsten-Strengthened 9Cr Steels, Mater. Sci. Eng. A, 2001, 319–321, p 770–773

    Article  Google Scholar 

  6. K. Laha, K.S. Chandravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S.L. Mannan, Characterization of Microstructures Across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking, Metall. Mater. Trans. A, 2007, 38, p 58–68

    Article  Google Scholar 

  7. T. Sakthivel, K. Laha, M. Vasudevan, M. Koteswara Rao, and S. Panneer Selvi, Type IV Cracking Behaviour of Modified 9Cr-1Mo Steel Weld Joints, Mater. High Temp., 2016, https://doi.org/10.1080/09603409.2015.1137158

    Google Scholar 

  8. L. Falat, A. Vyrostkova, V. Homolova, and M. Svoboda, Creep Deformation and Failure of E911/E911 and P92/P92 Similar Weld-Joints, Eng. Fail. Anal., 2009, 16, p 2114–2120

    Article  Google Scholar 

  9. V. Sklenička, K. Kuchařová, M. Svobodová, M. Kvapilová, P. Král, and L. Horváth, Creep Properties in Similar Weld Joint of a Thick-Walled P92 Steel Pipe, Mater. Charact., 2016, 119, p 1–12

    Article  Google Scholar 

  10. X. Wang, Q. Pan, Y. Ren, W. Shang, H. Zeng, and H. Liu, Microstructure and Type IV Cracking Behavior of HAZ in P92 Steel Weldment, Mater. Sci. Eng. A, 2012, 552, p 493–501

    Article  Google Scholar 

  11. X. Xu, G.D. West, J.A. Sifert, J.D. Parker, and R.C. Thomson, The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel, Metall. Mater. Trans. A, 2017, 48A, p 5396–5414

    Article  Google Scholar 

  12. F. Masuyama, Effect of Specimen Size and Shape on Creep Rupture Behavior of Creep Strength Enhanced Ferritic Steel Welds, Int. J. Press. Vessels Pip., 2010, 87, p 617–623

    Article  Google Scholar 

  13. K. Sawada, H. Hongo, T. Watanabe, and M. Tabuchi, Analysis of the microstructure near the crack tip of ASME Gr92 steel after creep crack growth, Mater. Charact., 2010, 61, p 1097–1102

    Article  Google Scholar 

  14. H. Naoi, M. Ohgami, S. Araki, T. Ogawa, H. Yasuda, H. Masumoto, and T. Fujita, Development of High-Strength Ferritic Steel NF616 for Boiler Tubes, Nippon Steel Technical Report, No. 50, 1991, p 7–13

  15. M. Ohgami, H. Mimura, H. Naoi, T. Ikemoto, S. Kinbara, and T. Fujita, Development of 9CrW Tube, Pipe and Forging for Ultra Supercritical Power Plant Boilers, Nippon Steel Technical Report, No. 72, 1997, p 59–64

  16. Y. Hasegawa, H. Morimoto, Microstructure and Precipitates of 9Cr-1Mo-NbV-B Steel Creep-Ruptured at 600 °C for 296 kh, in Proceedings of Creep and Fracture of Engineering Materials and Structures (Creep2012), The Japan Institute of Metals, 2012, B38.

  17. M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, and J. Konys, Creep-to-Rupture of the Steel P92 at 650 °C in Oxygen-Controlled Stagnant Lead in Comparison to Air, J. Nucl. Mater., 2013, 432, p 78–86

    Article  Google Scholar 

  18. J. Parker, Factors Affecting Type IV Creep Damage in Grade 91 Steel Welds, Mater. Sci. Eng. A, 2013, 578, p 430–437

    Article  Google Scholar 

  19. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S. Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep Rupture Behavior of 9Cr–1.8W–0.5Mo–VNb (ASME Grade 92) Ferritic Steel Weld Joint, Mater. Sci. Eng. A, 2014, 591, p 111–120

    Article  Google Scholar 

  20. M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H. Ghassemi Armaki, and K. Maruyama, Effect of Precipitates on Long-Term Creep Deformation Properties of P92 and P122 Type Advanced Ferritic Steels for USC Power Plants, Mater. Sci. Eng. A, 2009, 510–511, p 162–168

    Article  Google Scholar 

  21. M. Yamazaki, T. Watanabe, H. Hongo, and M. Tabuchi, Creep Rupture Properties of Welded Joints of Heat Resistant Steels, J. Power Energy Syst., 2008, 2(4), p 1140–1149

    Article  Google Scholar 

  22. Y. Hasegawa, M. Ohgami, and Y. Okamura, Advanced Heat Resistant Steels for Power Generation, R. Viswanathan and J. Nutting, Ed., The University Press, Cambridge, 1999,

    Google Scholar 

  23. N. Bagshaw, C. Punshon, J. Rothwell, Development of Welding P92 Pipes Using the Reduced Pressure Electron Beam Welding Process for a Study of Creep Performance, in Proceedings of the ASME Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, March 25–27, 2014, ETAM2014-1010

  24. L. Zhao, H. Jing, L. Xu, J. An, and G. Xiao, Numerical Investigation of Factors Affecting Creep Damage Accumulation in ASME P92 Steel Welded Joint, Mater. Des., 2012, 34, p 566–575

    Article  Google Scholar 

  25. T. Sakthivel, S. Panneer Selvi, and K. Laha, An Assessment of Creep Deformation and Rupture Behaviour of 9Cr–1.8W–0.5Mo–VNb (ASME Grade 92) Steel, Mater. Sci. Eng. A, 2015, 640, p 61–71

    Article  Google Scholar 

  26. L. Esposito, Type IV Creep Cracking of Welded Joints: Numerical Study of the Grain Size Effect in HAZ, Procedia Struct. Integr., 2016, 2, p 919–926

    Article  Google Scholar 

  27. B.A. Shassere, Y. Yamamoto, and S. Suresh Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical processing, Metall. Mater. Trans. A, 2016, 47, p 2188–2200

    Article  Google Scholar 

  28. P. Mohyla, Z. Kubon, R. Cep, and I. Samardzic, Evaluation of Creep Properties of Steel P92 and Its Weld Joint, Metalurgija, 2014, 53(2), p 175–178

    Google Scholar 

  29. P.J. Ennis, A. Zielinska-Lipiec, and A. Czyrska-Filemonowicz, Influence of Heat Treatments on Microstructural Parameters and Mechanical Properties of P92 Steel, Mater. Sci. Technol., 2000, 16, p 1226–1232

    Article  Google Scholar 

  30. Y. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessels Pip., 2009, 86, p 585–592

    Article  Google Scholar 

  31. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Creep Damage Evaluation of 9Cr–1Mo–V–Nb Steel Welded Joints Showing Type IV Fracture, Int. J. Press. Vessels Pip., 2006, 83, p 63–71

    Article  Google Scholar 

  32. S.K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, and M. Matsui, Effect of Welding Process and Groove Angle on Type IV Cracking Behaviour of Weld Joints of a Ferritic Steel, Sci. Technol. Weld. Join., 2005, 10, p 149–157

    Article  Google Scholar 

  33. J.A. Francis, W. Mazur, and H. Bhadeshia, Review Type IV Cracking in Ferritic Power Plant Steels, Mater. Sci. Technol., 2006, 22, p 1387–1395

    Article  Google Scholar 

  34. D.J. Smith, N.S. Walker, and S.T. Kimmins, Type IV Creep Cavity Accumulation and Failure in Steel Welds, Int. J. Press. Vessels Pip., 2003, 80, p 617–627

    Article  Google Scholar 

  35. T. Sakthivel, S. Panneer Selvi, P. Parameswaran, and K. Laha, Influence of Thermal Ageing on Microstructure and Tensile Properties of P92 Steel, High Temp. Mater. Process. (Lond.), 2016, https://doi.org/10.1515/htmp-2016-0040

    Google Scholar 

  36. RCC MR Design code, Section 1, Sub section Z, 2002. French Society for Design and Construction Rules for Nuclear Island components.

Download references

Acknowledgments

The authors wish to thank Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research, Dr. G. Amarendra, Metallurgy and Materials Group, Dr. Shaju K Albert, Materials Engineering Group, Kalpakkam, and Dr. K. Laha, AUSC, Delhi, for their keen interest in the work and encouragement. The authors wish to acknowledge UGC-DAE consortium for SEM study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sakthivel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, T., Sasikala, G., Dash, M.K. et al. Creep Deformation and Rupture Behavior of P92 Steel Weld Joint Fabricated by NG-TIG Welding Process. J. of Materi Eng and Perform 28, 4364–4378 (2019). https://doi.org/10.1007/s11665-019-04157-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04157-1

Keywords

Navigation