Skip to main content
Log in

Origin of the {111}〈112〉 Cold Rolling Texture Development in a Soft Magnetic Fe-27%Co Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Plastic deformation of Fe-27%Co alloy at room temperature was investigated. The present alloy, usually delivered with a low-texture component for the magnetic core in rotating machines, develops a rather high intensity of Goss texture after recrystallization, when a suitable manufacturing process is applied. Thanks to this texture and its magnetic properties, this material can replace the grain-oriented Fe-3%Si alloy in electric transformer application. The intensity of the recrystallization Goss component depends directly on the sharpness of the {111}〈112〉 orientation developed during cold rolling. Thus, the origin of this {111}〈112〉 deformation texture has been studied using visco-plastic self-consistent (VPSC) simulations. This model showed that only the {110}〈111〉 slip systems allow developing the {111}〈112〉 texture. The predominance of this slip system has been effectively identified from slip markings on the deformed sample by EBSD. More, this simulation has shown that a Goss texture at the hot-rolled state favors the {111}〈112〉 development during cold rolling, as observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Bozorth, Ferromagnetism, Wiley-IEEE Press, 1993, ISBN-13: 978-0780310322, ISBN-10: 0780310322

  2. N. Bernier, E. Leunis, C. Furtado, T. Van De Putte, and G. Ban, EBSD Study of Angular Deviations from the Goss Component in Grain-Oriented Electrical Steels, Micron, 2013, 54–55, p 43–51

    Article  Google Scholar 

  3. F. Cruz-Gandarilla, T. Baudin, R. Penelle, and H. Mendoza-Leon, Study of Local Microstructure and Texture Heterogeneities in Hot Rolled CGO Fe-3%Si Sheets, Materials Science Forum, 2004, p 123–128, http://www.scopus.com/inward/record.url?eid=2-s2.0-17144375595&partnerID=tZOtx3y1

  4. F. Cruz-Gandarilla, R. Penelle, H.M. Leon, T. Baudin, and J.G. Cabañas-Moreno, A Study of Local Microstructure and Texture Heterogeneities in a CGO Fe3%Si Alloy from Hot Rolling to Primary Recrystallization, Materials Science Forum, 2005, p 483–488, http://www.scopus.com/inward/record.url?eid=2-s2.0-35348868606&partnerID=tZOtx3y1

  5. F. Cruz-Gandarilla, R. Penelle, H.M. Leon, T. Baudin, and J.G. Cabañas-Moreno, Texture and Microstructure Evolution in a Fe-Si CGO Sheet During the Processing Route before Secondary Recrystallization, A.D. Rollett, Ed., Wiley, Hoboken, 2008,

    Chapter  Google Scholar 

  6. C.G. Dunn, Cold-Rolled and Primary Recrystallization Textures In Cold-Rolled Single Crystals of Silicon Iron, Acta Metall., 1954, 2, p 173–183

    Article  Google Scholar 

  7. C. Gheorghies and A. Doniga, Evolution of Texture in Grain Oriented Silicon Steels, J. Iron. Steel Res. Int., 2009, 16(4), p 78–83

    Article  Google Scholar 

  8. W. Guo, W. Min Mao, Y. Li, and Z.G. An, Influence of Intermediate Annealing on Final Goss Texture Formation in Low Temperature Reheated Fe-3%Si Steel, Mater. Sci. Eng. A, 2011, 528(3), p 931–934

    Article  Google Scholar 

  9. Y. Inokuti, YShimizu, C. Maeda, and H. Shimanakai, Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss, Proceedings of the 1st Riso International Symposium on Metallurgy and Materials Sciences, 1980.

  10. H. Masui, Y. Matsuo, M. Mizokami, and H. Mogi, Relation between Magnetostriction and Magnetic Domains in Changing Direction of Grain Oriented Silicon Steel Sheet, ISIJ Int., 1996, 36(1), p 101–110. https://doi.org/10.2355/isijinternational.36.101

    Article  Google Scholar 

  11. M. Matsuo, Texture Control in the Production of Grain Oriented Silicon Steels, ISIJ Int., 1989, 29(10), p 809–827. https://doi.org/10.2355/isijinternational.29.809

    Article  Google Scholar 

  12. S. Mishra, C. Därmann, and K. Lücke, On the Development of the Goss Texture in Iron-3% Silicon, Acta Metall., 1984, 32(12), p 2185–2201

    Article  Google Scholar 

  13. V. Stoyka, F. Kováč, O. Stupakov, and I. Petryshynets, Texture Evolution in Fe-3% Si Steel Treated under Unconventional Annealing Conditions, Mater. Charact., 2010, 61(11), p 1066–1073

    Article  Google Scholar 

  14. P. Chen, S.C. Mao, Y. Liu, F. Wang, Y.F. Zhang, Z. Zhang, and X.D. Han, In-Situ EBSD Study of the Active Slip Systems and Lattice Rotation Behavior of Surface Grains in Aluminum Alloy during Tensile Deformation, Mater. Sci. Eng. A, 2013, 580, p 114–124

    Article  Google Scholar 

  15. D. Raabe and K. Lücke, Rolling and Annealing Textures of BCC Metals, Mater. Sci. Forum, 1994, 157, p 597–610

    Article  Google Scholar 

  16. F. Bridier, D.L. McDowell, P. Villechaise, and J. Mendez, Crystal Plasticity Modeling of Slip Activity in Ti-6Al-4 V Under High Cycle Fatigue Loading, Int. J. Plast, 2009, 25(6), p 1066–1082

    Article  Google Scholar 

  17. E.P. Busso and G. Cailletaud, On the Selection of Active Slip Systems in Crystal Plasticity, Int. J. Plast., 2005, 21, p 2212–2231

    Article  Google Scholar 

  18. B. Klusemann, B. Svendsen, and H. Vehoff, Modeling and Simulation of Deformation Behavior, Orientation Gradient Development and Heterogeneous Hardening in Thin Sheets with Coarse Texture, Int. J. Plast, 2013, 50, p 109–126

    Article  Google Scholar 

  19. J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, H.M. Mourad, and B.L. Hansen, A Crystal Plasticity Study of Heterophase Interface Character Stability of Cu/Nb Bicrystals, Int. J. Plast., 2013, 48, p 72–91

    Article  Google Scholar 

  20. P.A. Sabnis, S. Forest, N.K. Arakere, and V.A. Yastrebov, Crystal Plasticity Analysis of Cylindrical Indentation on a Ni-Base Single Crystal Superalloy, Int. J. Plast., 2013, 51, p 200–217

    Article  Google Scholar 

  21. M. Yamaguchi, Y. Umakoshi, T. Yamane, Y. Minonishi, and S. Morozumi, Slip Systems in an Fe-54 At.% Co Alloy, Scr. Metall., 1982, 16(5), p 607–609

    Article  Google Scholar 

  22. N. Naveen Kumar, R. Tewari, P.V. Durgaprasad, B.K. Dutta, and G.K. Dey, Active Slip Systems in Bcc Iron during Nanoindentation: A Molecular Dynamics Study, Comput. Mater. Sci., 2013, 77, p 260–263

    Article  Google Scholar 

  23. D. Raabe, Experimental Investigation and Simulation of Crystallographic Rolling Textures of Fe–11Cr Steel, Mater. Sci. Technol., 1995, 11(10), p 985–993. https://doi.org/10.1179/mst.1995.11.10.985

    Article  Google Scholar 

  24. J.J. Cox, G.T. Horne, and R.F. Mehl, Slip, Twinning and Fracture in Single Crystals of Iron, Trans. Am. Soc. Met., 1957, 49, p 118–131

    Google Scholar 

  25. W.A. Spitzig and A.S. Keh, The Effect of Orientation and Temperature on the Plastic Flow Properties of Iron Single Crystals, Acta Metall., 1970, 18(6), p 611–622

    Article  Google Scholar 

  26. D. Ali, M.Z. Butt, and M. Khaleeq-Ur-Rahman, Ablation Yield and Angular Distribution of Ablated Particles from Laser-Irradiated Metals: The Most Fundamental Determining Factor, Appl. Surf. Sci., 2011, 257(7), p 2854–2860

    Article  Google Scholar 

  27. D. Hull, Orientation and Temperature Dependence of Plastic Deformation Processes in 3.25% Silicon Iron, Proc. R. Soc. Lond., 1963, 274, p 5–20

    Article  Google Scholar 

  28. B. Šesták and J. Blahovec, The Temperature Dependence of Slip Planes in Fe-3.4% Si Single Crystals, Phys. Status Solidi, 1970, 40(2), p 599–607

    Article  Google Scholar 

  29. T. Taoka, S. Takeuchi, and E. Furubayashi, Slip Systems and Their Critical Shear Stress in 3% Silicon Iron, J. Phys. Soc. Japan, 1964, 19(5), p 701–711

    Article  Google Scholar 

  30. A. El Bartali, Apport des mesures de champs cinématiques à l’étude des micromécanismes d’endommagement en fatigue plastique d’un acier inoxydable duplex, Ph.D. Dissertation, Ecole centrale de Paris, Paris, France, 2007 (in French).

  31. A. El Bartali, V. Aubin, L. Sabatier, P. Villechaise, and S. Degallaix-Moreuil, Identification and Analysis of Slip Systems Activated during Low-Cycle Fatigue in a Duplex Stainless Steel, Scr. Mater., 2008, 59(12), p 1231–1234

    Article  Google Scholar 

  32. A. El Bartali, V. Aubin, and S. Degallaix, Surface Observation and Measurement Techniques to Study the Fatigue Damage Micromechanisms in a Duplex Stainless Steel, Int. J. Fatigue, 2009, 31(11–12), p 2049–2055. https://doi.org/10.1016/j.ijfatigue.2008.11.003

    Article  Google Scholar 

  33. M.C. Marinelli, A. El Bartali, J.W. Signorelli, P. Evrard, V. Aubin, I. Alvarez-Armas, and S. Degallaix-Moreuil, Activated Slip Systems and Microcrack Path in LCF of a Duplex Stainless Steel, Mater. Sci. Eng. A, 2009, 509(1–2), p 81–88

    Article  Google Scholar 

  34. X. Zheng and H. Zhang, Experimental Determination of Deformation Induced Lattice Rotation by EBSD Technique for Slip System Analysis, J. Mater. Sci. Technol., 2017, 33(1), p 90–98

    Article  Google Scholar 

  35. L.Q. Chen and N. Kanetake, Experimental Study and Finite Element Polycrystal Model Simulation of the Cold Rolling Textures in a Powder Metallurgy Processed Pure Aluminum Plate, J. Mater. Sci. Technol., 2005, 21(2), p 148–154

    Google Scholar 

  36. R.A. Lebensohn and C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41(9), p 2611–2624

    Article  Google Scholar 

  37. U.F. Kocks, C.N. Tome, and H.R. Wenk, Texture and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Materials Properties, 2nd ed., Cambridge University Press, Cambridge, 2000

    Google Scholar 

  38. I.J. Beyerlein, R.A. Lebensohn, and C.N. Tomé, Modeling Texture and Microstructural Evolution in the Equal Channel Angular Extrusion Process, Mater. Sci. Eng. A, 2003, 345(1–2), p 122–138. https://doi.org/10.1016/S0921-5093(02)00457-4

    Article  Google Scholar 

  39. P. Mu, Etude de l’amorçage en fatigue plastique d’un acier inoxydable austénitique. Ph.D. Dissertation, Ecole Centrale de Lille, France, 2011 (in french)

  40. A. Molinari, G.R. Canova, and S. Ahzi, A Self Consistent Approach of the Large Deformation Polycrystal Viscoplasticity, Acta Metall., 1987, 35(12), p 2983–2994

    Article  Google Scholar 

  41. H. El Kadiri, J.C. Baird, J. Kapil, A.L. Oppedal, M. Cherkaoui, and S.C. Vogel, Flow Asymmetry and Nucleation Stresses of 1 0 1 2 Twinning and Non-Basal Slip in Magnesium, Int. J. Plast, 2013, 44, p 111–120

    Article  Google Scholar 

  42. K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, and F. Barlat, A Crystallographic Dislocation Model for Describing Hardening of Polycrystals during Strain Path Changes. Application to Low Carbon Steels, Int. J. Plast., 2013, 46, p 54–69

    Article  Google Scholar 

  43. R.A. Lebensohn and C.N. Tomé, A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals, Mater. Sci. Eng. A, 1994, 175(1–2), p 71–82

    Article  Google Scholar 

  44. J.D. Eshelby, Determination of the elastic field of an ellipsoidal inclusion, Proc. R. Soc. Lond., 1957, 241, p 376–396

    Article  Google Scholar 

  45. C. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The Relation between Macroscopic and Microscopic Strain Hardening in FCC Polycrystals, Acta Metall., 1984, 32(10), p 1637–1653

    Article  Google Scholar 

  46. Nabi B., Nouveaux alliages Fe-Co magnétiques pour l’aéronautique, à microstructure partiellement recristallisée et à texture fortement orientée, Ph.D. Dissertation, Université Paris-Sud, France, 2014 (in French).

  47. D. Dorner, S. Zaefferer, and D. Raabe, Retention of the Goss Orientation between Microbands during Cold Rolling of an Fe3%Si Single Crystal, Acta Mater., 2007, 55(7), p 2519–2530

    Article  Google Scholar 

  48. B. Nabi, A.-L. Helbert, F. Brisset, G. André, T. Waeckerlé, and T. Baudin, Effect of Recrystallization and Degree of Order on the Magnetic and Mechanical Properties of Soft Magnetic FeCo-2V Alloy, Mater. Sci. Eng. A, 2013, 578, p 215–221

    Article  Google Scholar 

  49. B. Nabi, A.-L. Helbert, F. Brisset, R. Batonnet, G. André, T. Waeckerlé, and T. Baudin, Effect of Long Range Order on Mechanical Properties of Partially Recrystallized Fe49Co-2V Alloy, Mater. Sci. Eng. A, 2014, 592, p 70–76

    Article  Google Scholar 

  50. D. Ali, N. Mushtaq, and M.Z. Butt, Investigation of Active Slip-Systems in Some Body-Centered Cubic Metals, J. Mater. Sci., 2011, 46(11), p 3812–3821

    Article  Google Scholar 

  51. D. Dorner, S. Zaefferer, L. Lahn, and D. Raabe, Overview of Microstructure and Microtexture Development in Grain-Oriented Silicon Steel, J. Magn. Magn. Mater., 2006, 304(2), p 183–186

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to thank R. Batonnet, from Aperam alloys industry, for providing all the samples of the investigated Fe-27%Co alloy. This work was supported by “La region Ile de France” and in part by the PHC Tassili Program No. 12MDU862 and another part by the PHC Maghreb Program No. 16MAG03. The authors would also like to thank Carlos N. Tomé from Los Alamos National Laboratory, USA (tome@lanl.gov), for providing VPSC7 code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Laure Helbert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabi, B., Helbert, AL., Azzeddine, H. et al. Origin of the {111}〈112〉 Cold Rolling Texture Development in a Soft Magnetic Fe-27%Co Alloy. J. of Materi Eng and Perform 28, 3767–3776 (2019). https://doi.org/10.1007/s11665-019-04126-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04126-8

Keywords

Navigation