Skip to main content
Log in

Investigation of active slip-systems in some body-centered cubic metals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tensile tests were performed on high-purity W and Mo polycrystals at room temperature for a range of axial strain-rates 2.1 × 10−4–2.1 × 10−2 s−1. The critical resolved shear stress (CRSS) data was analyzed by using the analytical formulation for the strain-rate dependence of the CRSS derived in the kink-pair nucleation (KPN) model of flow stress in crystals with high intrinsic lattice friction. On evaluation of various microscopic slip-parameters of the model, the active slip-system in both W and Mo polycrystals was identified as {110}〈111〉. This is in good agreement with that deduced from the published data on the temperature dependence of the CRSS of these crystals as well as from the observed slip-lines on the deformed crystals reported in the literature. Moreover, the available data on the temperature dependence of the CRSS of Mo, Nb, Fe, V, and K crystals were also analyzed within the framework of the KPN model of flow stress. Peierls mechanism was found to be responsible for the CRSS of these metals; the active slip-systems in refractory metals Mo, Nb, Fe, and V were {110}〈111〉 and {211}〈111〉 whereas that in alkali metal K was {321}〈111〉.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Orowan E (1934) Z fuer Phys 89:605

    Article  Google Scholar 

  2. Polanyi M (1934) Z Phys 89:660

    Article  CAS  Google Scholar 

  3. Taylor G (1934) Proc R Soc A 145:363

    Google Scholar 

  4. Taylor G (1934) Proc Roy Soc A145:388

    Google Scholar 

  5. Zamiri AR, Pourboghrat F (2010) Int J Plast 26:731

    Article  CAS  Google Scholar 

  6. Kaun L, Luft A, Richter J, Schulze D (1968) Phys Stat Sol 26:485

    Article  CAS  Google Scholar 

  7. Guiu F, Pratt PL (1966) Phys Stat Sol 15:539

    Article  CAS  Google Scholar 

  8. Takeuchi S, Maeda K (1977) Acta Metall 25:1485

    Article  CAS  Google Scholar 

  9. Nagakawa J, Meshii M (1981) Phil Mag A 44:11651

    Article  Google Scholar 

  10. Wasserbach W (1995) Phys Stat Sol (a) 147:417

    Article  Google Scholar 

  11. Seeger A, Wasserbach W (2002) Phys Stat Sol (a) 189:27

    Article  CAS  Google Scholar 

  12. Butt MZ (2007) Phil Mag 87:3595

    Article  CAS  Google Scholar 

  13. Butt MZ, Khaleeq-ur-Rahman M, Dilawar Ali (2009) J Phys D Appl Phys 42:035405

    Article  Google Scholar 

  14. Malygin GA (2005) Phys Solid State 47:896

    Article  CAS  Google Scholar 

  15. Feltham P, Kauser N (1990) Phys Stat Sol (a) 117:135

    Article  CAS  Google Scholar 

  16. Arsenault RJ (1967) Acta Metall 15:501

    Article  CAS  Google Scholar 

  17. Feltham P (1969) J Phys D Appl Phys 2:377

    Article  Google Scholar 

  18. Abed FH, Voyiadjis GZ (2005) Acta Mech 175:1

    Article  Google Scholar 

  19. Little EA (1976) J Aust Inst Metals 21:50

    CAS  Google Scholar 

  20. Nemat-Nasser S, Guo W, Liu M (1999) Scripta Mater 40:859

    Article  CAS  Google Scholar 

  21. Brunner D (2000) Mater Trans JIM 41:152

    CAS  Google Scholar 

  22. Suzuki T, Koizumi H, Kirchner HOK (1995) Acta Metall Mater 43:2177

    Article  CAS  Google Scholar 

  23. Peters BC, Hendrickson AA (1970) Metall Trans 1:2271

    Article  CAS  Google Scholar 

  24. Brunner D, Diehl J (1987) Phys Stat Sol (a) 104:145

    Article  CAS  Google Scholar 

  25. Brunner D, Diehl J, Seeger A (1984) In: Paidar V, Lejcek L (eds) The structure and properties of crystal defects. Elsevier Publishing Co, Amsterdam, p 175

    Google Scholar 

  26. Diehl J, Schreiner M, Staiger S, Ziesele S (1976) Scripta Metall 10:949

    Article  CAS  Google Scholar 

  27. Horne GT, Roy RB, Paxton HW (1963) J Iron Steel Inst 201:161

    CAS  Google Scholar 

  28. Takeuchi S, Yoshida H, Taoka T (1968) Trans Jpn Inst Met Suppl 9:715

    CAS  Google Scholar 

  29. Wang CT, Banbridge DW (1972) Metall Trans 3: 3161

  30. Yoshinaga H, Toma K, Abe K, Morozumi S (1971) Phil Mag 23:1387

    Article  CAS  Google Scholar 

  31. Basinski ZS, Duesbery MS, Murty GS (1981) Acta Metall 29:801

    Article  CAS  Google Scholar 

  32. Conard H, Hayes W (1963) Trans ASM 56:249

    Google Scholar 

  33. Groger R (2007) Development of physically based plastic flow rules for body-centered cubic metals with temperature and strain rate dependencies. PhD Thesis, University of Pennsylvania

  34. Ackermann F, Mughrabi H, Seeger A (1983) Acta Metall 31:1353

    Article  CAS  Google Scholar 

  35. Spitzig WA, Keh AS (1970) Metall Trans 1:2751

    CAS  Google Scholar 

  36. Aono Y, Kuramoto E, Kitajima K (1981) Rep Res Inst Appl Mech 29:127

    CAS  Google Scholar 

  37. Brunner D, Diehl J (1991) Phy Stat Sol (a) 124:455

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilawar Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, D., Mushtaq, N. & Butt, M.Z. Investigation of active slip-systems in some body-centered cubic metals. J Mater Sci 46, 3812–3821 (2011). https://doi.org/10.1007/s10853-011-5295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5295-0

Keywords

Navigation