Skip to main content

Advertisement

Log in

Effects of Heat Input on Weld-Bead Geometry, Surface Chemical Composition, Corrosion Behavior and Thermal Properties of Fiber Laser-Welded Nitinol Shape Memory Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 15 June 2019

This article has been updated

Abstract

Bead-on-plate laser welding was carried out on 1-mm-thick Nitinol sheets at different heat input values. The variations in weld-bead geometry and variations in microstructures across the bead were studied. The effects of heat input on surface layer composition of the welded samples, corrosion properties and phase transformation temperature were examined. From x-ray photoelectron spectroscopy (XPS), it was clear that relative intensity of elemental Ni peak was higher in parent material and the oxidation state of Ti was Ti4+. It was further observed from Auger electron spectroscopy (AES) that the Ti to Ni ratio on the top surface of the welded samples was more than 1, and as a result of this the stability of TiO2 layer was enhanced, which eventually helped to improve the corrosion property of the welded samples. The polarization resistance of the welded samples was increased by more than ten times compared to that of the un-welded samples. From differential scanning calorimetry (DSC), it became evident that phase transformation temperatures got changed due to welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 18 June 2019

    Please note that the correct sequence of authors is “Susmita Datta, Mohammad Shahid Raza, Partha Saha, Dilip Kumar Pratihar”.

References

  1. N.J. Nollu, H.W. Kerr, Y. Zhou, and J. Xie, Laser Weldability of Pt and Ti Alloys, Mater. Sci. Eng. A, 2005, 397(1-2), p 8–15

    Article  Google Scholar 

  2. C. Maletta, A. Falvo, F. Furgiuele, G. Barbieri, and M. Brandizzi, Fracture Behaviour of Nickel-titanium Laser Welded Joints, J. Mater. Eng. Perform., 2009, 18(5-6), p 569–574

    Article  Google Scholar 

  3. H. Gugel, A. Schuermann, and W. Theisen, Laser Welding of NiTi Wires, Mater. Sci. Eng. A, 2008, 481, p 668–671

    Article  Google Scholar 

  4. B. Tam, M.I. Khan, and Y. Zhou, Mechanical and Functional Properties of Laser-welded Ti-55.8 Wt Pct Ni NiTinol Wires, Metall. Mater. Trans. A, 2011, 42(8), p 2166–2175

    Article  Google Scholar 

  5. C.W. Chan and H.C. Man, Laser Welding of Thin Foil Nickel-Titanium Shape Memory Alloy, Opt. Lasers Eng., 2011, 49(1), p 121–126

    Article  Google Scholar 

  6. C.W. Chan, H.C. Man, and T.M. Yue, Effects of Process Parameters upon the Shape Memory and Pseudo-elastic Behaviors of Laser-welded NiTi Thin Foil, Metall. Mater. Trans. A, 2011, 42(8), p 2264–2270

    Article  Google Scholar 

  7. M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, and A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless steel, Mater. Lett., 2007, 61(11-12), p 2343–2346

    Article  Google Scholar 

  8. N. Amanat, N.L. James, and D.R. McKenzie, Welding Methods for Joining Thermoplastic Polymers for the Hermetic Enclosure of Medical Devices, Med. Eng. Phys., 2010, 32(7), p 690–699

    Article  Google Scholar 

  9. M.F. Nichols, The Challenges for Hermetic Encapsulation of Implanted Devices - a Review, Crit. Rev. Biomed. Eng., 1994, 22(1), p 39–67

    Google Scholar 

  10. W.H. Ko, Packaging of Microfabricated Devices and Systems, Mater. Chem. Phys., 1995, 42(3), p 169–175

    Article  Google Scholar 

  11. I. Milošev, T. Kosec, and H.H. Strehblow, XPS and EIS Study of The Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53(9), p 3547–3558

    Article  Google Scholar 

  12. J.C. Wataha, N.L. O’Dell, B.B. Singh, M. Ghazi, G.M. Whitford, and P.E. Lockwood, Relating Nickel-induced Tissue Inflammation to Nickel release in Vivo, J. Biomed. Mater. Res. Part A, 2001, 58(5), p 537–544

    Article  Google Scholar 

  13. L. Peltonen, Nickel Sensitivity in the General Population, Contact Dermatitis, 1979, 5(1), p 27–32

    Article  Google Scholar 

  14. C.L. Dunlap, S.K. Vincent, and B.F. Barker, Allergic Reaction to Orthodontic Wire: Report of Case, J. Am. Dental Assoc., 1989, 118(4), p 449–450

    Article  Google Scholar 

  15. G. Rondelli, B. Vicentini, and A. Cigada, The Corrosion Behaviour of Nickel Titanium Shape Memory Alloys, Corros. Sci., 1990, 30(8-9), p 805–812

    Article  Google Scholar 

  16. G. Rondelli, Corrosion Resistance Tests on NiTi Shape Memory Alloy, Biomaterials, 1996, 17(20), p 2003–2008

    Article  Google Scholar 

  17. S.A. Shabalovskaya, G.C. Rondelli, A.L. Undisz, J.W. Anderegg, T.D. Burleigh, and M.E. Rettenmayr, The Electrochemical Characteristics of Native Nitinol Surfaces, Biomaterials, 2009, 30(22), p 3662–3671

    Article  Google Scholar 

  18. T. Kanemura, K.I. Yokoyama, and J.I. Sakai, Effects of Acid Type on Corrosion and Fracture Behavior of Ni-Ti Superelastic Alloy Under Sustained Tensile Load in Physiological Saline Solution Containing Hydrogen Peroxide, Corros. Sci., 2008, 50(10), p 2785–2795

    Article  Google Scholar 

  19. Y. Okazaki and E. Gotoh, Metal Release from Stainless Steel, Co-Cr-Mo-Ni-Fe and Ni-Ti Alloys in Vascular Implants, Corros. Sci., 2008, 50(12), p 3429–3438

    Article  Google Scholar 

  20. N. Figueira, T.M. Silva, M.J. Carmezim, and J.C.S. Fernandes, Corrosion Behaviour of NiTi Alloy, Electrochim. Acta, 2009, 54(3), p 921–926

    Article  Google Scholar 

  21. Z.D. Cui, H.C. Man, and X.J. Yang, The Corrosion and Nickel Release Behavior of Laser Surface-melted NiTi Shape Memory Alloy in Hanks’ Solution, Surf. Coat. Technol., 2005, 192(2-3), p 347–353

    Article  Google Scholar 

  22. D. Starosvetsky and I. Gotman, Corrosion Behavior of Titanium Nitride Coated Ni-Ti Shape Memory Surgical Alloy, Biomaterials, 2001, 22(13), p 1853–1859

    Article  Google Scholar 

  23. C. Liu, P.K. Chu, G. Lin, and D. Yang, Effects of Ti/TiN Multilayer on Corrosion Resistance of Nickel-Titanium Orthodontic Brackets in Artificial Saliva, Corros. Sci., 2007, 49(10), p 3783–3796

    Article  Google Scholar 

  24. X.J. Yan, D.Z. Yang, and X.P. Liu, Corrosion Behavior of a Laser-welded NiTi Shape Memory Alloy, Mater. Charact., 2007, 58(7), p 623–628. https://doi.org/10.1016/j.matchar.2006.07.010

    Article  Google Scholar 

  25. Y.T. Hsu, Y.R. Wang, S.K. Wu, and C. Chen, Effect of CO2 Laser Welding on the Shape-memory and Corrosion Characteristics of TiNi Alloys, Metall. Mater. Trans. A, 2001, 32(3), p 569–576

    Article  Google Scholar 

  26. S.A. Shabalovskaya, H. Tian, J.W. Anderegg, D.U. Schryvers, W.U. Carroll, and J. Van Humbeeck, The Influence of Surface Oxides on the Distribution and Release of Nickel from Nitinol Wires, Biomaterials, 2009, 30(4), p 468–477

    Article  Google Scholar 

  27. S.A. Shabalovskaya, Surface, Corrosion and Biocompatibility Aspects of Nitinol as an Implant Material, Bio-med. Mater. Eng., 2002, 12(1), p 69–109

    Google Scholar 

  28. S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4(3), p 447–467

    Article  Google Scholar 

  29. S. Shabalovskaya, J. Anderegg, G. Rondelli, W. Vanderlinden, and S. De Feyter, Comparative in Vitro performances of Bare Nitinol Surfaces, Bio-Med. Mater. Eng., 2008, 18(1), p 1–14

    Google Scholar 

  30. C.W. Chan, H.C. Man, and T.M. Yue, Effect of Post-weld Heat-treatment on the Oxide Film and Corrosion Behaviour of Laser-welded Shape Memory NiTi Wires, Corros. Sci., 2012, 56, p 158–167

    Article  Google Scholar 

  31. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Effect of Nd-YAG Laser Welding on the Functional Properties of the Ni-49.6 at.% Ti, Mater. Sci. Eng. A, 1999, 273, p 813–817

    Article  Google Scholar 

  32. A. Falvo, F.M. Furgiuele, and C. Maletta, Functional Behaviour of a NiTi-welded Joint: Two-way Shape Memory Effect, Mater. Sci. Eng. A, 2008, 481, p 647–650

    Article  Google Scholar 

  33. J.P. Oliveira, R.M. Miranda, N. Schell, and F.B. Fernandes, High Strain and Long Duration Cycling Behavior of Laser Welded NiTi Sheets, Int. J. Fatigue, 2016, 83, p 195–200

    Article  Google Scholar 

  34. A. Falvo, F.M. Furgiuele, and C. Maletta, Laser Welding of a NiTi alloy: Mechanical and Shape memory Behaviour, Mater. Sci. Eng. A, 2005, 412(1-2), p 235–240

    Article  Google Scholar 

  35. L.A. Vieira, F.B. Fernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, and J.L. Ocaña, Mechanical Behaviour of Nd: YAG Laser Welded Superelastic NiTi, Mater. Sci. Eng. A, 2011, 528(16-17), p 5560–5565

    Article  Google Scholar 

  36. G.R. Mirshekari, A. Kermanpur, A. Saatchi, S.K. Sadrnezhaad, and A.P. Soleymani, Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi shape Memory Wires, J. Mater. Eng. Perform., 2015, 24(9), p 3356–3364

    Article  Google Scholar 

  37. Z. Zeng, M. Yang, J.P. Oliveira, D. Song, and B. Peng, Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-functional Design Applications, Smart Mater. Struct., 2016, 25(8), p 085001

    Article  Google Scholar 

  38. J.P. Oliveira, F.B. Fernandes, R.M. Miranda, N. Schell, and J.L. Ocaña, Effect of Laser Welding Parameters on the Austenite and Martensite Phase Fractions of NiTi, Mater. Charact., 2016, 119, p 148–151

    Article  Google Scholar 

  39. J.P. Oliveira, F.B. Fernandes, R.M. Miranda, N. Schell, and J.L. Ocaña, Residual Stress Analysis in Laser Welded NiTi Sheets Using Synchrotron X-ray Diffraction, Mater. Des., 2016, 100, p 180–187

    Article  Google Scholar 

  40. J.P. Oliveira, D. Barbosa, F.B. Fernandes, and R.M. Miranda, Tungsten Inert Gas (TIG) Welding of Ni-rich NiTi Plates: Functional Behavior, Smart Mater. Struct., 2016, 25(3), p 03LT01

    Article  Google Scholar 

  41. A. Ikai, K. Kimura, and H. Tobushi, TIG Welding and Shape Memory Effect of TiNi Shape Memory Alloy, J. Intell. Mater. Syst. Struct., 1996, 7(6), p 646–655

    Article  Google Scholar 

  42. W. Zhang, S.S. Ao, J.P. Oliveira, Z. Zeng, Z. Luo, and Z.Z. Hao, Corrigendum: Effect of Ultrasonic Spot Welding on the Mechanical Behaviour of NiTi Shape Memory Alloys, Smart Mater. Struct., 2018, 27(10), p 109501

    Article  Google Scholar 

  43. S.M. Prabu, H.C. Madhu, C.S. Perugu, K. Akash, P.A. Kumar, S.V. Kailas, M. Anbarasu, and I.A. Palani, Microstructure, Mechanical Properties and Shape Memory Behaviour of Friction Stir Welded Nitinol, Mater. Sci. Eng. A, 2017, 693, p 233–236

    Article  Google Scholar 

  44. S.M. Prabu, H.C. Madhu, C.S. Perugu, K. Akash, R. Mithun, P.A. Kumar, S.V. Kailas, M. Anbarasu, and I.A. Palani, Shape Memory Effect, Temperature Distribution and Mechanical Properties of Friction Stir Welded Nitinol, J. Alloys Compd., 2019, 776, p 334–345

    Article  Google Scholar 

  45. Z. Zeng, B. Panton, J.P. Oliveira, A. Han, and Y.N. Zhou, Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper, Smart Mater. Struct., 2015, 24(12), p 125036

    Article  Google Scholar 

  46. J.P. Oliveira, Z. Zeng, C. Andrei, F.B. Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Des., 2017, 128, p 166–175

    Article  Google Scholar 

  47. R.M. Miranda, E. Assunção, R.J. Silva, J.P. Oliveira, and L. Quintino, Fiber Laser Welding of NiTi to Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2015, 81(9-12), p 1533–1538

    Article  Google Scholar 

  48. Z. Zeng, J.P. Oliveira, M. Yang, D. Song, and B. Peng, Functional Fatigue Behavior of NiTi-Cu Dissimilar Laser Welds, Mater. Des., 2017, 114, p 282–287

    Article  Google Scholar 

  49. J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda, and F.B. Fernandes, Laser Joining of NiTi to Ti6Al4 V Using a Niobium Interlayer, Acta Mater., 2016, 105, p 9–15

    Article  Google Scholar 

  50. M. Daly, A. Pequegnat, Y.N. Zhou, and M.I. Khan, Fabrication of a Novel Laser-Processed NiTi Shape Memory Microgripper with Enhanced Thermomechanical Functionality, J. Intell. Mater. Syst. Struct., 2013, 24(8), p 984–990

    Article  Google Scholar 

  51. B. Panton, J.P. Oliveira, Z. Zeng, Y.N. Zhou, and M.I. Khan, Thermomechanical Fatigue of Post-weld Heat Treated NiTi Shape Memory Alloy Wires, Int. J. Fatigue, 2016, 92, p 1–7

    Article  Google Scholar 

  52. R. Chakraborty, V.S. Seesala, M. Sen, S. Sengupta, S. Dhara, P. Saha, K. Das, and S. Das, MWCNT Reinforced Bone Like Calcium Phosphate—Hydroxyapatite Composite Coating Developed Through Pulsed Electrodeposition with Varying Amount of Apatite Phase and Crystallinity to Promote Superior Osteoconduction, Cytocompatibility and Corrosion Protection Performance Compared to Bare Metallic Implant Surface, Surf. Coat. Technol., 2017, 325, p 496–514

    Article  Google Scholar 

  53. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN, 1992

    Google Scholar 

  54. A. Pequegnat, A. Michael, J. Wang, K. Lian, Y. Zhou, and A.N.D.M.I. Khan, Surface Characterizations of Laser modified Biomedical Grade NiTi Shape Memory Alloys, Mater. Sci. Eng. C, 2015, 50, p 367–378

    Article  Google Scholar 

  55. H.C. Man, Z.D. Cui, and A.N.D.T.M. Yue, Corrosion Properties of Laser Surface Melted NiTi Shape Memory Alloy, Scr. Mater., 2001, 45(12), p 1447–1453

    Article  Google Scholar 

  56. M.I. Khan and Y. Zhou, Effects of Local Phase Conversion on the Tensile Loading of Pulsed Nd: YAG Laser Processed Nitinol, Mater. Sci. Eng. A, 2010, 527(23), p 6235–6238

    Article  Google Scholar 

  57. W.J. Lorenz and F. Mansfeld, Determination of Corrosion Rates by Electrochemical DC and AC Methods, Corros. Sci., 1981, 21(9-10), p 647–672

    Article  Google Scholar 

  58. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.X. Wagner, and G. Eggeler, Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys, Acta Mater., 2010, 58(9), p 3444–3458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Datta, S., Raza, M.S. et al. Effects of Heat Input on Weld-Bead Geometry, Surface Chemical Composition, Corrosion Behavior and Thermal Properties of Fiber Laser-Welded Nitinol Shape Memory Alloy. J. of Materi Eng and Perform 28, 2754–2763 (2019). https://doi.org/10.1007/s11665-019-04077-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04077-0

Keywords

Navigation