Skip to main content
Log in

Effect of MWCNT Content on the Structure and Properties of Spark Plasma-Sintered Iron-MWCNT Composites Synthesized by High-Energy Ball Milling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of multiwall carbon nanotube (MWCNT) content on the physical and mechanical properties of Fe-MWCNT composites has been studied. High-energy ball milling (HEBM) is employed to produce the composite powder; following this, spark plasma sintering (SPS) process has been adopted for powder consolidation. The composite powder and the sintered products were subjected to structural characterization by XRD. Microstructural studies were carried out by optical, field-emission scanning and high-resolution transmission electron microscopy. While Fourier transform infrared spectroscopic study of composites was done to understand the bonding characteristics, Raman spectroscopy was employed to assess the structural damage of MWCNT after HEBM. The effects of processing on the behavior of C-C, C-O and Fe-O bonds are studied by x-ray photoelectron spectroscopy. Microhardness and compressive strength of composites are also determined. Finally, magnetic and electrical properties of the composites were characterized. It was observed that optimized ball milling conditions help to preserve the structural identity of MWCNT. Consolidation by SPS insured good interfacial bonding. The microhardness and compression strength are significantly improved in MWCNT-reinforced iron matrix composite. MWCNT has appreciably improved the electrical conductivity of the composites. Tethering of MWCNT by iron oxide has led to appreciable improvement in saturation magnetization till 3 wt.% MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64

    Article  Google Scholar 

  2. J.Z. Liao, M.J. Tan, and I. Sridhar, Spark Plasma Sintered Multi-Wall Carbon Nanotube Reinforced Aluminum Matrix Composites, Mater. Des., 2010, 31, p 96–100

    Article  Google Scholar 

  3. R.P. Bustamante, C.D.G. Esparza, I.E. Guel, M.M. Yoshida, L.L. Jiménez, A.S.P. García, and R.M. Sánchez, Microstructural and Mechanical Characterization of Al-MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng. A, 2009, 502, p 159–163

    Article  Google Scholar 

  4. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites, Compos. Sci. Technol., 2010, 70, p 2237–2241

    Article  Google Scholar 

  5. H. Kwon, D.H. Park, J.F. Silvain, and A. Kawasaki, Investigation of Carbon Nanotube Reinforced Aluminum Matrix Composite Materials, Compos. Sci. Technol., 2010, 70, p 546–550

    Article  Google Scholar 

  6. C. Suryanarayana and N. Al, Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater Sci., 2013, 58, p 383–512

    Article  Google Scholar 

  7. A. Kumar, U. Pandel, and M.K. Banerjee, Effect of High Energy Ball Milling on the Structure of Iron—Multiwall Carbon Nanotubes (MWCNT) Composite, Adv. Mater. Res., 2017, 6, p 1–11

    Article  Google Scholar 

  8. P. Sharma, A. Kumar, and M.K. Banerjee, Structural Evolution in Mechanically Alloyed and Spark Plasma Sintered Iron–0.15 wt.% MWCNT Composite, J. Mater. Eng. Perform., 2018, 27, p 4740–4748

    Article  Google Scholar 

  9. F. Saba, S.A. Sajjadi, M.H. Sabzevar, and F. Zhang, Formation Mechanism of Nano Titanium Carbide on Multi-walled Carbon Nanotube and Influence of the Nano Carbides on the Load Bearing Contribution of the Nanotubes Inner-Walls in Aluminum Matrix Composites, Carbon, 2017, 115, p 720–729

    Article  Google Scholar 

  10. J. Liao and M.J. Tan, Mixing of Carbon Nanotubes (CNTs) and Aluminum Powder for Powder Metallurgy Use, Powder Technol., 2011, 208, p 42–48

    Article  Google Scholar 

  11. H. Li, J. Kang, C. He, N. Zhao, C. Liang, and B. Li, Mechanical Properties and Interfacial Analysis of Aluminum Matrix Composites Reinforced by Carbon Nanotubes with Diverse Structures, Mater. Sci. Eng. A, 2013, 577, p 120–124

    Article  Google Scholar 

  12. H. Kwon, M. Takamichi, A. Kawasaki, and M. Leparoux, Investigation of the Interfacial Phases Formed Between Carbon Nanotubes and Aluminum in a Bulk material, Mater. Chem. Phys., 2013, 138, p 787–793

    Article  Google Scholar 

  13. L. Ci, Z. Ryu, N. Yun, J. Phillipp, and M. Ruhle, Investigation of the Interfacial Reaction Between Multi-walled Carbon Nanotubes and Aluminum, Acta Mater., 2006, 54, p 5367–5375

    Article  Google Scholar 

  14. W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, Effectively enhanced Load Transfer by Interfacial Reactions In Multi-Walled Carbon Nanotube Reinforced Al Matrix Composite, Acta Mater., 2017, 125, p 369–376

    Article  Google Scholar 

  15. F. Housaer, F. Beclin, M. Touzin, D. Tingaud, A. Legris, and A. Addad, Interfacial Characterization in Carbon Nanotube Reinforced Aluminum Matrix Composites, Mater. Charact., 2015, 110, p 94–101

    Article  Google Scholar 

  16. W. Zhou, S. Bang, H. Kurita, T. Miyazaki, Y. Fan, and A. Kawasaki, Interface and Interfacial Reactions in Multi-walled Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2016, 96, p 919–928

    Article  Google Scholar 

  17. S. Wang, R. Liang, B. Wang, and C. Zhang, Load-Transfer in Functionalized Carbon Nanotubes/Polymer Composites, Chem. Phys. Lett., 2008, 457, p 371–375

    Article  Google Scholar 

  18. E.N. Konyushenko, J. Stejskal, T. Miroslava, J. Hradil, J. Kovářová, and J. Prokeš, Multiwall Carbon Nanotubes Coated With Polyaniline, Polymer, 2006, 47, p 5715–5723

    Article  Google Scholar 

  19. A. Choudhury and P. Kar, Doping Effect of Carboxylic Acid Group Functionalized Multi-walled Carbon Nanotube on Polyaniline, Compos. B Eng., 2011, 42, p 1641–1647

    Article  Google Scholar 

  20. C.O. Baker, X. Huang, W. Nelson, and R.B. Kaner, Polyaniline nanofibers: Broadening Applications for Conducting Polymers, Chem. Soc. Rev., 2017, 46, p 1510–1525

    Article  Google Scholar 

  21. M.R. Basariya, V.C. Srivastava, and N.K. Mukhopadhyay, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Aluminum Alloy Composites Produced by Ball Milling, Mater. Des., 2014, 64, p 542–549

    Article  Google Scholar 

  22. K. Sarkar, S. Sarkar, and P.K. Das, Spark Plasma Sintered Multiwalled Carbon Nanotube/Silicon Carbide Composites: Densification, Microstructure, And Tribo-mechanical Characterization, J. Mater. Sci., 2016, 51, p 6697–6710

    Article  Google Scholar 

  23. T. Varo and A. Canakci, Effect of the CNT Content on Microstructure, Physical and Mechanical Properties of Cu-Based Electrical Contact Materials Produced by Flake, Powder Metall., 2016, 40, p 2711–2720

    Google Scholar 

  24. M.T.Z. Hassan, A.M.K. Esawi, and S. Metwalli, Effect of Carbon Nanotube Damage on the Mechanical Properties Of Aluminium–Carbon Nanotube Composites, J. Alloys Compd., 2014, 607, p 215–222

    Article  Google Scholar 

  25. J.G. Park, D.H. Keum, and Y.H. Lee, Strengthening Mechanisms in Carbon Nanotube-Reinforced Aluminum Composites, Carbon, 2015, 95, p 690–698

    Article  Google Scholar 

  26. S.E. Shin, Y.J. Ko, and D.H. Bae, Mechanical and Thermal Properties of Nanocarbon-Reinforced Aluminum Matrix Composites at Elevated Temperatures, Compos. B, 2016, 106, p 66–73

    Article  Google Scholar 

  27. S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, and Y. Wang, Cu Matrix Composites Reinforced with Aligned Carbon Nanotubes: Mechanical, Electrical and Thermal Properties, Mater. Sci. Eng., 2016, 675, p 82–91

    Article  Google Scholar 

  28. W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, Effectively Enhanced Load Transfer by Interfacial Reactions In Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites, Acta Mater., 2017, 125, p 369–376

    Article  Google Scholar 

  29. J.Y. Suh and D.H. Bae, Mechanical Properties of Fe-Based Composites Reinforced with Multi-Walled Carbon Nanotubes, Mater. Sci. Eng. A, 2013, 582, p 321–325

    Article  Google Scholar 

  30. F.C. Wang, Z.-H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu, and S. Osamu, Rapid and Low Temperature Spark Plasma Sintering Synthesis of Novel Carbon Nanotube Reinforced Titanium Matrix Composites, Carbon, 2015, 95, p 396–407

    Article  Google Scholar 

  31. K.S. Munira, Y. Zheng, D. Zhang, J. Lind, Y. Lia, and C. Wena, Microstructure and Mechanical Properties of Carbon Nanotubes Reinforced Titanium Matrix Composites Fabricated Via Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 688, p 505–523

    Article  Google Scholar 

  32. A. Kumar, M.K. Banerjee, and U. Pandel, Development of a Novel MWCNT Reinforced Iron Matrix Nanocomposite Through Powder Metallurgy Route, Powder Technol., 2018, 331, p 41–51

    Article  Google Scholar 

  33. B. Ghosh and S.K. Pradhan, Microstructure Characterization of Nanocrystalline Fe3C Synthesized by High-Energy Ball Milling, J. Alloys Compd., 2009, 477, p 127–132

    Article  Google Scholar 

  34. O. Drbohlav and A.R. Yavari, Magnetic Properties of Mechanically Alloyed Nanocrystalline fcc Cu50Fe50 During Thermal Decomposition, J. Magn. Mater., 1994, 137, p 243–248

    Article  Google Scholar 

  35. O. Drbohlav and A.R. Yavari, Mechanical Alloying and Thermal Decomposition of Ferromagnetic Nanocrystalline f.c.c.-Cu50Fe50, Acta Mater., 1995, 43, p 1799–1809

    Article  Google Scholar 

  36. E. Dislaki, J. Sorta, and E. Pellicer, Parametric Aqueous Electro Deposition Study and Characterization of Fe–Cu Films, Electrochem. Acta, 2017, 231, p 739–748

    Article  Google Scholar 

  37. P. Gorria, D. Martínez-Blanco, J.A. Blanco, A. Hernando, J.S. Garitaonandia, L.F. Barquín, J. Campo, and R.I. Smith, Invar Effect in fcc-FeCu Solid Solutions, Phys. Rev. B, 2004, 69, p 214421–214425

    Article  Google Scholar 

  38. C. Cutrano and Ch.E. Lekka, Structural, Magnetic and Electronic Properties of Cu-Fenanoclusters by Density Functional Theory Calculations, J. Alloys Compd., 2017, 707, p p114–p119

    Article  Google Scholar 

  39. T. Sourmail, Near Equiatomic Fe Co Alloys: Constitution, Mechanical and Magnetic Properties, Prog. Mater Sci., 2005, 50, p 816–880

    Article  Google Scholar 

  40. H. Jeon, J. Kim, J.Y. Chung, and Y.D. Kim, Formation of Nanocrystalline Fe–Co Powders Produced by Mechanical Alloying, Mater. Sci. Eng. A, 2000, 291, p 17–21

    Article  Google Scholar 

  41. B.H. Lee, B.S. Ahn, D.G. Kim, S. Tag Oh, H. Jeon, J. Ahn, and Y.D. Kim, Microstructure and Magnetic Properties of Nanosized Fe–Co Alloy Powders Synthesized by Mechano-Chemical and Mechanical Alloying Process, Mater. Lett., 2003, 57, p 1103–1107

    Article  Google Scholar 

  42. C. Kuhrt and L. Schultz, Formation and Magnetic Properties of Nanocrystalline Mechanically Alloyed Fe–Co and Fe–Ni, J. Appl. Phys., 1993, 73, p 6588–6590

    Article  Google Scholar 

  43. H. Shokrollahi, The Magnetic and Structural Properties of the Most Important Alloys of Iron Produced by Mechanical Alloying, Mater. Des., 2009, 30, p 3374–3387

    Article  Google Scholar 

  44. A. Zelenakova, D. Oleksakova, J. Degmova, J. Kovac, P. KollaR, M. Kusy, and P. Sovak, Structural and Magnetic Properties of Mechanically Alloyed FeCo Powders, J. Magn. Magn. Mater., 2007, 316, p 519–522

    Article  Google Scholar 

  45. X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong, and S. Jin, Investigations on Magnetic Properties and Structure for Carbon Encapsulated Nanoparticles of Fe, Co, Ni, Mater. Sci. Eng. A, 2000, 286, p 157–160

    Article  Google Scholar 

  46. J. Ma, M. Qin, X. Zhang, L. Zhang, X. Qu, and L. Tian, Microstructure and Magnetic Properties of High Density P/M Pure Iron, Mater. Res. Bull., 2015, 64, p 123–127

    Article  Google Scholar 

  47. T.T. Bui, X.Q. Le, D.P. To, and V.T. Nguyen, Investigation of Typical Properties on Nanocrystalline Iron Powders Prepared by Ball Milling Techniques, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4, p 045003–045008

    Article  Google Scholar 

  48. F.C. Dillon, A. Bajpai, A. Koos, S. Downes, Z. Aslam, and N. Grobert, Tuning the Magnetic Properties of Iron-Filled Carbon Nanotubes, Carbon, 2012, 50, p 3674–3681

    Article  Google Scholar 

  49. F.S. Boi, G. Mountjoy, R.M. Wilson, Z. Luklinska, L.J. Sawiak, and M. Baxendale, Multiwall Carbon Nanotubes Continuously Filled With Micrometer-Length Ferromagnetic a-Fe Nanowires, Carbon, 2013, 64, p 351–358

    Article  Google Scholar 

  50. H. Kim and W. Sigmund, Iron Particles in Carbon Nanotubes, Carbon, 2005, 43, p 1743–1748

    Article  Google Scholar 

  51. H. Raanaei, H. Eskandari, and V.M. Hosseini, Structural and Magnetic Properties of Nanocrystalline Fe–Co–Ni Alloy Processed by Mechanical Alloying, J. Magn. Magn. Mater., 2016, 398, p 190–195

    Article  Google Scholar 

  52. O. Boshko, O. Nakonechna, N. Belyavina, M. Dashevskyi, and S. Revo, Nanocrystalline Fe–C comPosites Obtained by Mechanical Alloying of Iron and Carbon nanotubes, Adv. Powder Technol., 2017, 28, p 964–972

    Article  Google Scholar 

  53. K.T. Kim, J. Ecket, G. Liu, M.P. Jin, K.L. Byung, and H.H. Soon, Influence of Embedded-Carbon Nanotubes on the Thermal Properties of Copper Matrix Nanocomposite Processed by Molecular-Level Mixing, Scipta Mater., 2011, 64, p 181–184

    Article  Google Scholar 

  54. N. Nayana, A.K. Shukla, P. Chandranb, S.R. Bakshib, S.V.S.N. Murtyb, B. Pantb, and P.V. Venkitakrishnanb, Processing and Characterization of Spark Plasma Sintered Copper/Carbon Nanotube Composites, Mater. Sci. Eng. A, 2017, 682, p 229–237

    Article  Google Scholar 

  55. H.S. Avener, Introduction to Physical Metallurgy, Vol 35, Mc Graw Hill Eduction, New Delhi, 2013

    Google Scholar 

  56. Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of Ball-Milling Time on Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites, Compos. A, 2012, 43, p 2161–2168

    Article  Google Scholar 

  57. K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott, M. De, and C.Wen Zhuand, Quantitative Analyses of MWCNT-Ti Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution, Adv. Eng. Mater., 2015, 17, p 1660–1669

    Article  Google Scholar 

  58. S. Wanga, R. Liang, B. Wang, and C. Zhang, Dispersion and Thermal Conductivity of Carbon Nanotube Composites, Carbon, 2009, 47, p 53–57

    Article  Google Scholar 

  59. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Developing High-Performance Aluminum Matrix Composites with Directionally Aligned Carbon Nanotubes by Combining Friction Stir Processing and Subsequent Rolling, Carbon, 2013, 62, p 35–42

    Article  Google Scholar 

  60. H. Kwon, D.H. Park, J.F. Silvain, and A. Kawasak, Investigation of Carbon Nanotube Reinforced Aluminum Matrix Composite Materials, Compos. Sci. Technol., 2010, 70, p 546–550

    Article  Google Scholar 

  61. C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, and D.H. Wu, Fabrication of aluminum–Carbon Nanotube Composites and Their Electrical Properties, Carbon, 1999, 37, p 855–858

    Article  Google Scholar 

  62. S.E. Shin, H.J. Choi, and D.H. Bae, Electrical and Thermal Conductivities of Aluminum-Based Composites Containing Multi-walled Carbon Nanotubes, J. Compos. Mater., 2013, 47, p 2249–2256

    Article  Google Scholar 

  63. G. Tong, W. Wa, Q. Hua, Y. Miao, J. Guan, and H. Qian, Enhanced Electromagnetic Characteristics of Carbon Nanotubes/Carbonyl Iron Powders Complex Absorbers in 2–18GHz Ranges, J. Alloys Compd., 2011, 509, p 451–456

    Article  Google Scholar 

  64. S. Hudziak, A. Darfeuille, R. Zhang, T. Peijs, G. Mountjoy, G. Bertoni, and M. Baxendale, Magnetoresistive Phenomena on Fe-Filled Carbon Nanotube/Elastomer Composites, Nanotechnology, 2010, 21, p 125505–125508

    Article  Google Scholar 

  65. B. Ma, Y. Huang, C. Zhu, C. Chen, M. Fan, and D. Sun, A Facile Method to Synthesize Carbon Coated Fe, Co and Ni and an Examination of Their Magnetic Properties, J. Alloy. Compd., 2016, 687, p 74–745

    Article  Google Scholar 

  66. H. Raanaei, H. Eskandari, and V.M. Hosseini, Structural and Magnetic Properties of Nano Crystalline Fe–Co–Ni Alloy Processed by Mechanical Alloying, J. Magnetism & Magnetic Materials, 2016, 398, p 190–195

    Article  Google Scholar 

  67. O. Boshko, O. Nakonechna, M. Dashevskyi, K. Lvanenko, N. Belyavina, and S. Revo, Effect of the Carbon Nanotubes on Structure and Magnetic Properties of the Fe-Cu(4:1) Composites, Adv. Powder Technol., 2016, 27, p 1101–1108

    Article  Google Scholar 

  68. B. Hea, M. Wang, W. Sunc, and Z. Shen, Preparation and Magnetic Property of the MWNT-Fe2+ Composite, Mater. Chem. Phys., 2006, 95, p 289–293

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Materials Research Centre, Malaviya National Institute of Technology, Jaipur, India, for providing the characterization facilities. The authors also thank Mr. M. Shiva Kumar, Indian Institute of Technology, Kanpur, India, for his kind help in VSM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Banerjee, U., Chowrasia, M.K. et al. Effect of MWCNT Content on the Structure and Properties of Spark Plasma-Sintered Iron-MWCNT Composites Synthesized by High-Energy Ball Milling. J. of Materi Eng and Perform 28, 2983–3000 (2019). https://doi.org/10.1007/s11665-019-04056-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04056-5

Keywords

Navigation