Skip to main content
Log in

Effect of Grain Boundary and Crystallographic Orientation on the Stress Corrosion Behavior of an Al-Zn-Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of grain boundary and crystallographic orientation on the stress corrosion behavior of an Al-4.5Zn-1.4Mg alloy was investigated by comparing the performance of constant load stress corrosion test (CLSCT) and tensile test of specimens parallel to the longitudinal and transverse directions of the extruded plate. The results revealed that the strength of the longitudinal and transverse specimens decreased by 9.68 and 18.13%, respectively, after 10-day CLSCT. The transverse specimens show poor resistance to stress corrosion cracking (SCC). The grain boundaries (GB) of the longitudinal section are less dense, and more of them are distributed along the extrusion direction compared with the cross section with selected areas of the same size. The SCC of all specimens starts from the side faces of the specimen, and it is dominated by intergranular cracking. But the corrosion of the transverse specimens was more serious. The cracks of all specimens tend to propagate along the GBs with misorientation of about 50°-60°, and the difference of Schmidt factor (SF) values of grains on both sides of the crack is significantly large. The crack of longitudinal specimens propagates relatively parallel to the tensile direction, while propagation of the crack in transverse specimens is more zigzag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280, p 102–107

    Article  Google Scholar 

  2. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280, p 37–49

    Article  Google Scholar 

  3. J. Hirsch and T. Al-Samman, Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications, Acta Mater., 2013, 61, p 818–843

    Article  Google Scholar 

  4. X.Y. Sun, B. Zhang, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, and W. Ke, Correlations Between Stress Corrosion Cracking Susceptibility and Grain Boundary Microstructures for an Al-Zn-Mg Alloy, Corros. Sci., 2013, 77, p 103–112

    Article  Google Scholar 

  5. Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He, Influence of Retrogression and Re-aging Treatment on Corrosion Behaviour of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2011, 32, p 2149–2156

    Article  Google Scholar 

  6. T.C. Tsai and T.H. Chuang, Role of Grain Size on the Stress Aluminum Alloys, Mater. Sci. Eng. A, 1996, 225, p 135–144

    Article  Google Scholar 

  7. J. Chen, X. Zhang, L. Zou, Y. Yu, and Q. Li, Effect of Precipitate State on the Stress Corrosion Behavior of 7050 Aluminum Alloy, Mater. Charact., 2016, 114, p 1–8

    Article  Google Scholar 

  8. C. Cao, D. Zhang, X. Wang, Q. Ma, L. Zhuang, and J. Zhang, Effects of Cu Addition on the Precipitation Hardening Response and Intergranular Corrosion of Al-5.2Mg-2.0Zn (wt%) Alloy, Mater. Charact., 2016, 122, p 177–182

    Article  Google Scholar 

  9. S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch, Correlations Between Intergranular Stress Corrosion Cracking, Grain-Boundary Microchemistry, and Grain-Boundary Electrochemistry for Al-Zn-Mg-Cu Alloys, Corros. Sci., 2010, 52, p 4073–4080

    Article  Google Scholar 

  10. G. Peng, K. Chen, S. Chen, and H. Fang, Influence of Repetitious-RRA Treatment on the Strength and SCC Resistance of Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2011, 528, p 4014–4018

    Article  Google Scholar 

  11. T. Ramgopal, P.I. Gouma, and G.S. Frankel, Role of Grain-Boundary Precipitates and Solute-Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150, Corrosion, 2012, 58, p 687–697

    Article  Google Scholar 

  12. S.D. Liu, B. Chen, C.B. Li, Y. Dai, Y.L. Deng, and X.M. Zhang, Mechanism of Low Exfoliation Corrosion Resistance Due to Slow Quenching in High Strength Aluminium Alloy, Corros. Sci., 2015, 91, p 203–212

    Article  Google Scholar 

  13. R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens, Stress Corrosion Cracking and Hydrogen Embrittlement of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2004, 52, p 4727–4743

    Article  Google Scholar 

  14. R.K. Viswanadham, T.S. Sun, and J.A.S. Green, Grain Boundary Segregation in Al-Zn-Mg Alloys—Implications to Stress Corrosion Cracking, Metall. Mater. Trans. A, 1980, 11, p 85–89

    Article  Google Scholar 

  15. K. Kyzioł, K. Koper, M. Środa, M. Klich, and Ł. Kaczmarek, Influence of Gas Mixture During N + Ion Modification Under Plasma Conditions on Surface Structure and Mechanical Properties of Al-Zn Alloys, Surf. Coat. Technol., 2015, 278, p 30–37

    Article  Google Scholar 

  16. C.M. Abreu, M.J. Cristóbal, R. Figueroa, and G. Pena, Wear and Corrosion Performance of Two Different Tempers (T6 and T73) of AA7075 Aluminium Alloy After Nitrogen Implantation, Appl. Surf. Sci., 2015, 327, p 51–61

    Article  Google Scholar 

  17. Ł. Kaczmarek, M. Steglinski, J. Sawicki, J. Swiniarski, D. Batory, K. Kyzioł, Ł. Kołodziejczyk, W. Szymanski, P. Zawadzki, and D. Kottfer, Optimization of the Heat Treatment and Tribological Properties of 2024 and 7075 Aluminium Alloys, Arch. Metall. Mater., 2013, 58, p 535–540

    Article  Google Scholar 

  18. K.D. Ralston, D. Fabijanic, and N. Birbilis, Effect of Grain Size on Corrosion of High Purity Aluminium, Electrochim. Acta, 2011, 56, p 1729–1736

    Article  Google Scholar 

  19. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63, p 1201–1204

    Article  Google Scholar 

  20. M. Chen, Y. Deng, J. Tang, S. Fan, and X. Zhang, A Study of the Crystallographic Pitting Behavior of Al-0.54Mg-0.66Si Aluminum Alloy in Acidic Chloride Solutions, Mater. Charact., 2019, 148, p 259–265

    Article  Google Scholar 

  21. C. Meng, D. Zhang, L. Zhuang, and J. Zhang, Correlations Between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn Content of Al-Mg-Zn Alloys, J. Alloys Compd., 2016, 655, p 178–187

    Article  Google Scholar 

  22. V.S. Sinyavskii, V.V. Ulanova, and V.D. Kalinin, On the Mechanism of Intergranular Corrosion of Aluminum Alloys, Prot. Metals, 2004, 40, p 481–490

    Article  Google Scholar 

  23. H.C. Fang, H. Chao, and K.H. Chen, Effect of Recrystallization on Intergranular Fracture and Corrosion of Al-Zn-Mg-Cu-Zr Alloy, J. Alloys Compd., 2015, 622, p 166–173

    Article  Google Scholar 

  24. X. Lu, X. Han, Z. Du, G. Wang, L. Lu, J. Lei, and T. Zhou, Effect of Microstructure on Exfoliation Corrosion Resistance in an Al-Zn-Mg Alloy, Mater. Charact., 2018, 135, p 167–174

    Article  Google Scholar 

  25. G. Peng, K. Chen, H. Fang, and S. Chen, Effect of Cr and Yb Additions on Microstructure and Properties of Low Copper Al-Zn-Mg-Cu-Zr Alloy, Mater. Des., 2012, 36, p 279–283

    Article  Google Scholar 

  26. S. Chen, K. Chen, P. Dong, S. Ye, and L. Huang, Effect of Recrystallization and Heat Treatment on Strength and SCC of an Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 581, p 705–709

    Article  Google Scholar 

  27. Y. Shi, Q. Pan, M. Li, X. Huang, and B. Li, Effect of Sc and Zr Additions on Corrosion Behaviour of Al-Zn-Mg-Cu Alloys, J. Alloys Compd., 2014, 612, p 42–50

    Article  Google Scholar 

  28. H.C. Fang, H. Chao, and K.H. Chen, Effect of Zr, Er and Cr Additions on Microstructures and Properties of Al-Zn-Mg-Cu Alloys, Mater. Sci. Eng. A, 2014, 610, p 10–16

    Article  Google Scholar 

  29. J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, and Z.Q. Zheng, Influence of Retrogression Temperature and Time on the Mechanical Properties and Exfoliation Corrosion Behavior of Aluminium Alloy AA7150, Mater. Charact., 2009, 60, p 1334–1341

    Article  Google Scholar 

  30. S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, B.C. Muddle, R. Goswami, and S.P. Lynch, Some Effects of Alloy Composition on Stress Corrosion Cracking in Al-Zn-Mg-Cu Alloys, Corros. Sci., 2015, 98, p 50–62

    Article  Google Scholar 

  31. A.C.U. Rao, V. Vasu, M. Govindaraju, and K.V.S. Srinadh, Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: A Literature Review, Trans. Nonferr. Metals Soc., 2016, 26, p 1447–1471

    Article  Google Scholar 

  32. G.M. Scamans, Discontinuous Propagation of Stress Corrosion Cracks in Al-Zn-Mg Alloys, Scr. Metall., 1979, 13, p 245–250

    Article  Google Scholar 

  33. L. Christodoulou and H.M. Flower, Hydrogen Embrittlement and Trapping in Al-6%Zn-3%Mg, Acta Metall., 1980, 28, p 481–487

    Article  Google Scholar 

  34. D. Hardie, N.J.H. Holroyd, and R.N. Parkins, Reduced Ductility of High-Strength Aluminium Alloy During or After Exposure to Water, Metal Sci., 1979, 13, p 603–610

    Article  Google Scholar 

  35. E. Dix, Acceleration of the Rate of Corrosion by High Constant Stresses, AIME Trans, 1940, 137, p 11–40

    Google Scholar 

  36. Y. Shi, Q. Pan, M. Li, X. Huang, and B. Li, Influence of Alloyed Sc and Zr, and Heat Treatment on Microstructures and Stress Corrosion Cracking of Al-Zn-Mg-Cu Alloys, Mater. Sci. Eng. A, 2015, 621, p 173–181

    Article  Google Scholar 

  37. D. Tanguy, B. Bayle, R. Dif, and T. Magnin, Hydrogen Effects During IGSCC of pure Al-5Mg Alloy in NaCl Media, Corros. Sci., 2002, 44, p 1163–1175

    Article  Google Scholar 

  38. D. Najjar, T. Magnin, and T.J. Warner, Influence of Critical Surface Defects and Localized Competition Between Anodic Dissolution and Hydrogen Effects During Stress Corrosion Cracking of a 7050 Aluminium Alloy, Mater. Sci. Eng. A, 1997, 238, p 293–302

    Article  Google Scholar 

Download references

Acknowledgments

This present work was supported by National Natural Science Foundation (Project No. 51474240) and Provincial Science and Technology Major Project of Hunan province (Project No. 2016KG1004), which are greatly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingying Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhang, Y., Ye, L. et al. Effect of Grain Boundary and Crystallographic Orientation on the Stress Corrosion Behavior of an Al-Zn-Mg Alloy. J. of Materi Eng and Perform 28, 2954–2966 (2019). https://doi.org/10.1007/s11665-019-04050-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04050-x

Keywords

Navigation