Skip to main content
Log in

Investigations into Improvement in Formability of AA5754 and AA6082 Sheets at Elevated Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Warm forming is an attractive formability improvement technique which can be utilized to intensify the usage of aluminum alloy sheets in autobody constructions. In the present work, laboratory-scale stretch forming and deep drawing experiments were performed to demonstrate the comparative formability improvement in AA6082-O and AA5754-H22 aluminum alloy sheets at elevated temperatures. Significant enhancement of limiting dome height and forming limit diagram (FLD) was observed when stretch forming was performed at 200 °C. Warm deep drawing under both isothermal and nonisothermal conditions was carried out, and drastic improvement in drawability was found only under nonisothermal condition with an initial temperature gradient of 93 °C across the blank. Thermomechanical finite element (FE) models of the warm forming processes were developed using temperature-dependent Barlat-89 yield model coupled with Cowper–Symonds strain rate sensitivity model. The limiting dome heights, failure locations and strain distributions were well predicted by implementing experimental FLD as the failure criterion. Further, the effect of evolution of nonisothermal temperature gradient on the improvement in drawability of both the materials was analyzed in terms of cup height, earing profile, thickness distribution and surface strain evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Choi, M. Koç, and J. Ni, A Study on the Analytical Modeling for Warm Hydro-Mechanical Deep Drawing of Lightweight Materials, Int. J. Mach. Tools Manuf, 2007, 47(11), p 1752–1766. https://doi.org/10.1016/j.ijmachtools.2006.12.005

    Article  Google Scholar 

  2. O. El Fakir, L. Wang, D. Balint, J.P. Dear, J. Lin, and T.A. Dean, Numerical Study of the Solution Heat Treatment, Forming, and in-Die Quenching (HFQ) Process on AA5754, Int. J. Mach. Tools Manuf., 2014, 87, p 39–48. https://doi.org/10.1016/j.ijmachtools.2014.07.008

    Article  Google Scholar 

  3. G. Palumbo, A. Piccininni, P. Guglielmi, and G. Di Michele, Warm HydroForming of the Heat Treatable Aluminium Alloy AC170PX, J. Manuf. Process., 2015, 20, p 24–32. https://doi.org/10.1016/j.jmapro.2015.09.012

    Article  Google Scholar 

  4. S.M. Hussaini, G. Krishna, A.K. Gupta, and S.K. Singh, Development of Experimental and Theoretical Forming Limit Diagrams for Warm Forming of Austenitic Stainless Steel 316, J. Manuf. Process., 2015, 18, p 151–158. https://doi.org/10.1016/j.jmapro.2015.03.005

    Article  Google Scholar 

  5. S.S. Panicker, K.S. Prasad, S. Basak, and S.K. Panda, Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds, J. Mater. Eng. Perform., 2017, 26(8), p 3954–3969. https://doi.org/10.1007/s11665-017-2837-x

    Article  Google Scholar 

  6. F. Ozturk, H. Pekel, and H.S. Halkaci, The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures, J. Mater. Eng. Perform., 2011, 20(February), p 77–81

    Article  Google Scholar 

  7. D. Li and A. Ghosh, Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures, Mater. Sci. Eng. A, 2003, 352(1–2), p 279–286. https://doi.org/10.1016/S0921-5093(02)00915-2

    Article  Google Scholar 

  8. D. Li and A.K. Ghosh, Biaxial Warm Forming Behavior of Aluminum Sheet Alloys, J. Mater. Process. Technol., 2002, 2004(145), p 281–293

    Google Scholar 

  9. T. Naka, G. Torikai, R. Hino, and F. Yoshida, The Effects of Temperature and Forming Speed on the Forming Limit Diagram for Type 5083 Aluminum-Magnesium Alloy Sheet, J. Mater. Process. Technol., 2001, 113, p 648–653

    Article  Google Scholar 

  10. G. Palumbo and L. Tricarico, Numerical and Experimental Investigations on the Warm Deep Drawing Process of Circular Aluminum Alloy Specimens, J. Mater. Process. Technol., 2007, 184(1–3), p 115–123. https://doi.org/10.1016/j.jmatprotec.2006.11.024

    Article  Google Scholar 

  11. X. Fan, Z. He, W. Zhou, and S. Yuan, Formability and Strengthening Mechanism of Solution Treated Al-Mg-Si Alloy Sheet under Hot Stamping Conditions, J. Mater. Process. Technol., 2016, 228, p 179–185. https://doi.org/10.1016/j.jmatprotec.2015.10.016

    Article  Google Scholar 

  12. H. Laurent, J. Coër, P.Y. Manach, M.C. Oliveira, and L.F. Menezes, Experimental and Numerical Studies on the Warm Deep Drawing of an Al-Mg Alloy, Int. J. Mech. Sci., 2015, 93, p 59–72. https://doi.org/10.1016/j.ijmecsci.2015.01.009

    Article  Google Scholar 

  13. G. Palumbo, A. Piccininni, P. Guglielmi, R. Spina, L. Tricarico, D. Sorgente, G. Russello, A. Vitrano, and A. Lo Franco, Warm Forming of an AA5754 Component for Railway Vehicle Applications, Procedia Eng., 2017, 183, p 351–356

    Article  Google Scholar 

  14. R.K. Kesharwani, S. Basak, S.K. Panda, and S.K. Pal, Improvement in Limiting Drawing Ratio of Aluminum Tailored Friction Stir Welded Blanks Using Modified Conical Tractrix Die, J. Manuf. Process., 2017, 28, p 137–155. https://doi.org/10.1016/j.jmapro.2017.06.002

    Article  Google Scholar 

  15. K. Bandyopadhyay, S.K. Panda, P. Saha, and G. Padmanabham, Limiting Drawing Ratio and Deep Drawing Behavior of Dual Phase Steel Tailor Welded Blanks: FE Simulation and Experimental Validation, J. Mater. Process. Technol., 2015, 217, p 48–64. https://doi.org/10.1016/j.jmatprotec.2014.10.022

    Article  Google Scholar 

  16. S.S. Panicker and S. Kumar Panda, Improvement in Material Flow During Nonisothermal Warm Deep Drawing of Nonheat Treatable Aluminum Alloy Sheets, J. Manuf. Sci. Eng., 2016, 139(3), p 031013. https://doi.org/10.1115/1.4034594

    Article  Google Scholar 

  17. M. Zampaloni, N. Abedrabbo, and F. Pourboghrat, Experimental and Numerical Study of Stamp Hydroforming of Sheet Metals, Int. J. Mech. Sci., 2003, 45(11), p 1815–1848. https://doi.org/10.1016/j.ijmecsci.2003.11.006

    Article  Google Scholar 

  18. T. Naka, Y. Nakayama, T. Uemori, R. Hino, and F. Yoshida, Effects of Temperature on Yield Locus for 5083 Aluminum Alloy Sheet, J. Mater. Process. Technol., 2003, 140, p 494–499

    Article  Google Scholar 

  19. N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models, Int. J. Plast., 2007, 23(5), p 841–875. https://doi.org/10.1016/j.ijplas.2006.10.005

    Article  Google Scholar 

  20. H.S. Kim, A Combined FEA and Design of Experiments Approach for the Design and Analysis of Warm Forming of Aluminum Sheet Alloys, Int. J. Adv. Manuf. Technol., 2010, 51(1–4), p 1–14

    Article  Google Scholar 

  21. T. Abovyan, G.T. Kridli, P.A. Friedman, and G. Ayoub, Formability Prediction of Aluminum Sheet Alloys under Isothermal Forming Conditions, J. Manuf. Process., 2014, 20, p 406–413. https://doi.org/10.1016/j.jmapro.2014.08.003

    Article  Google Scholar 

  22. P. Leo, S. D’Ostuni, and G. Casalino, Hybrid Welding of AA5754 Annealed Alloy: Role of Post Weld Heat Treatment on Microstructure and Mechanical Properties, Mater. Des., 2016, 90, p 777–786. https://doi.org/10.1016/j.matdes.2015.10.150

    Article  Google Scholar 

  23. W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York, 1993

    Google Scholar 

  24. J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, Materials Park, 1993, p 207–216

    Google Scholar 

  25. Y. Zhu, K. Sun, and G.S. Frankel, Intermetallic Phases in Aluminum Alloys and Their Roles in Localized Corrosion, J. Electrochem. Soc., 2018, 165(11), p C807–C820

    Article  Google Scholar 

  26. C. Poletti, T. Wójcik, and C. Sommitsch, Hot Deformation of AA6082 Containing Fine Intermetallic Particles, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(3), p 1577–1586

    Article  Google Scholar 

  27. A. Aginagalde, X. Gomez, L. Galdos, and C. García, Heat Treatment Selection and Forming Strategies for 6082 Aluminum Alloy, J. Eng. Mater. Technol., 2009, 131(4), p 044501

    Article  Google Scholar 

  28. G. Mrowka-Nowotnik, J. Sieniawski, and A. Nowotnik, Effect of Heat Treatment on Tensile and Fracture Toughness Properties of 6082 Alloy, J. Acheivements Mater. Manuf. Eng., 2009, 32(2), p 162–170

    Google Scholar 

  29. Z. Zhao, W. Mao, F. Roters, and D. Raabe, A Texture Optimization Study for Minimum Earing in Aluminium by Use of a Texture Component Crystal Plasticity Finite Element Method, Acta Mater., 2004, 52(4), p 1003–1012

    Article  Google Scholar 

  30. K.S. Prasad, A.K. Gupta, Y. Singh, and S.K. Singh, A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25(12), p 5411–5423

    Article  Google Scholar 

  31. S.K. Panda, N. Sreenivasan, M.L. Kuntz, and Y. Zhou, Numerical Simulations and Experimental Results of Tensile Test Behavior of Laser Butt Welded DP980 Steels, J. Eng. Mater. Technol., 2008, 130(4), p 041003. https://doi.org/10.1115/1.2969256

    Article  Google Scholar 

  32. F. Mousavi, R. Hashemi, and R. Madoliat, Measurement of Directional Anisotropy Coefficients for AA7020-T6 Tubes and Prediction of Forming Limit Curve, Int. J. Adv. Manuf. Technol., 2018, https://doi.org/10.1007/s00170-018-1645-2

    Google Scholar 

  33. N. Hedayati and R. Hashemi, Some Practical Aspects of Digital Image Correlation Technique to Evaluate Anisotropy Coefficient and Its Comparison with Traditional Method, J. Test. Eval., 2020, 48(6), p 20180227. https://doi.org/10.1520/jte20180227

    Article  Google Scholar 

  34. S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(11), p 4267–4282. https://doi.org/10.1007/s11665-015-1740-6

    Article  Google Scholar 

  35. Livermore Software Technology Corporation, LS-DYNA Keyword User’s Manual, Version 971, Version, (California, 2007).

  36. F. Barlat and J. Lian, Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets under Plane Stress Conditions, Int. J. Plast., 1989, 5(1), p 51–66

    Article  Google Scholar 

  37. D. Hasenpouth, Tensile High Strain Rate Behavior of AZ31B Magnesium Alloy Sheet. MS Thesis, University of Waterloo. (2010) .https://uwspace.uwaterloo.ca/handle/10012/5449.

  38. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-hill, New York, 1986

    Google Scholar 

  39. K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Effect of Solution Treatment on Deep Drawability of IN718 Sheets: Experimental Analysis and Metallurgical Characterization, Mater. Sci. Eng. A, 2018, 727, p 97–112

    Article  Google Scholar 

  40. T. Huang, L. Shuai, A. Wakeel, G. Wu, N. Hansen, and X. Huang, Strengthening Mechanisms and Hall-Petch Stress of Ultrafine Grained Al-0.3%Cu, Acta Mater., 2018, 156, p 369–378. https://doi.org/10.1016/j.actamat.2018.07.006

    Article  Google Scholar 

  41. N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of Aluminum Alloys at Elevated Temperatures—Part 1: Material Characterization, Int. J. Plast., 2006, 22(2), p 314–341. https://doi.org/10.1016/j.ijplas.2005.03.005

    Article  Google Scholar 

  42. N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of Aluminum Alloys at Elevated Temperatures—Part 2: Numerical Modeling and Experimental Verification, Int. J. Plast, 2006, 22(2), p 342–373. https://doi.org/10.1016/j.ijplas.2005.03.006

    Article  Google Scholar 

  43. F. Kabirian, A.S. Khan, and A. Pandey, Negative to Positive Strain Rate Sensitivity in 5xxx Series Aluminum Alloys: Experiment and Constitutive Modeling, Int. J. Plast., 2014, 55, p 232–246. https://doi.org/10.1016/j.ijplas.2013.11.001

    Article  Google Scholar 

  44. F. Casari, M. Tassan, A. Messina, and A. Molinari, Effect of Punch Diameter, Grid Dimension, and Lubrication on Forming Limit Diagram, J. Test. Eval., 2006, 34(1), p 24–30

    Google Scholar 

  45. C.K.S. Moy, M. Weiss, J. Xia, G. Sha, S.P. Ringer, and G. Ranzi, Influence of Heat Treatment on the Microstructure, Texture and Formability of 2024 Aluminium Alloy, Mater. Sci. Eng. A, 2012, 552, p 48–60. https://doi.org/10.1016/j.msea.2012.04.113

    Article  Google Scholar 

  46. K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Prediction of Fracture and Deep Drawing Behavior of Solution Treated Inconel-718 Sheets: Numerical Modeling and Experimental Validation, Mater. Sci. Eng. A, 2018, 733(March), p 393–407. https://doi.org/10.1016/j.msea.2018.07.007

    Article  Google Scholar 

  47. T. Naka and F. Yoshida, Deep Drawability of Type 5083 Aluminium–magnesium Alloy Sheet under Various Conditions of Temperature and Forming Speed, J. Mater. Process. Technol., 1999, 89–90, p 19–23. https://doi.org/10.1016/S0924-0136(99)00057-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors profoundly acknowledge Mr. K. Sajun Prasad for his valuable help in microstructure analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicker, S.S., Panda, S.K. Investigations into Improvement in Formability of AA5754 and AA6082 Sheets at Elevated Temperatures. J. of Materi Eng and Perform 28, 2967–2982 (2019). https://doi.org/10.1007/s11665-019-04030-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04030-1

Keywords

Navigation