Skip to main content
Log in

Processing, As-Cast Microstructure and Wear Characteristics of a Monotectic Al-Bi-Cu Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ternary Al-based monotectic alloys have a good combination of wear resistance and mechanical strength. While self-lubricating soft elements guarantee an adequate wear resistance, the modification with third elements can increase the ability to support load. In the present investigation, a collection of microstructures is generated through transient directional solidification of the Al-3.2wt.%Bi-3.0wt.%Cu alloy. Samples with different Bi spacing have been subjected to micro-adhesive wear ball tests. A relationship linking the wear volume, V, the microstructural spacing and the test time is proposed for Bi spacing higher than 16 μm, according to which V decreases with the decrease in Bi spacing. It is observed that wider and deeper grooves emerged on the surface of the samples related to more refined Bi and Al2Cu phases, that is, associated with Bi spacing and Bi diameter lower than 16 and 2.4 μm, respectively. A reverse trend is noted for these finer microstructures, for which V increases with further decrease in Bi spacing. This can be caused by the detachment of the very fine and less cohesive Al2Cu lamellas as the Al2O3 oxide breaks up forming debris, with the presence of these lamellas as loose debris at the interface acting as third-body abrasives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.P. Silva, A. Garcia, and J.E. Spinelli, Microstructure Morphologies During the Transient Solidification of Hypomonotectic and Monotectic Al-Pb Alloys, J. Alloys Compd., 2011, 509, p 10098–10104

    Article  Google Scholar 

  2. R.N. Grugel, T.A. Lograsso, and A. Hellawell, The Solidification of Monotectic Alloys Microstructures and Phase Spacings, Metall. Trans. A, 1984, 15, p 1003–1012

    Article  Google Scholar 

  3. L. Ratke and A. Müller, On the Destabilisation of Fibrous Growth in Monotectic Alloys, Scripta Mater., 2006, 54, p 1217–1220

    Article  Google Scholar 

  4. L.L. Ratke, Theoretical Considerations and Experiments on Microstructural Stability Regimes in Monotectic Alloys, Mater. Sci. Eng. A, 2005, 413–414, p 504–508

    Article  Google Scholar 

  5. I. Ohnuma, T. Saegusa, Y. Takaku, C.P. Wang, X.J. Liu, R. Kainuma, and K. Ishida, Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap, J. Electron. Mater., 2009, 38, p 2–9

    Article  Google Scholar 

  6. H. Xie, G.C. Yang, P.Q. La, W.X. Hao, J.F. Fan, and W.M. Liu, Microstructure and Wear Performance of Ni-20wt.%Pb Hypomonotectic Alloys, Mater. Charact., 2004, 52, p 153–158

    Article  Google Scholar 

  7. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Formation of Immiscible Alloy Powders with Egg-Type Microstructure, Science, 2002, 297, p 990–993

    Article  Google Scholar 

  8. L. Ratke and S. Diefenbach, Liquid Immiscible Alloys, Mater. Sci. Eng. R, 1995, 15, p 263–347

    Article  Google Scholar 

  9. L. Bo, S. Li, L. Wang, D. Wu, M. Zuo, and D. Zhao, Liquid-Liquid Phase Separation and Solidification Behavior of Al55Bi36Cu9 Monotectic Alloy with Different Cooling Rates, Results Phys., 2018, 8, p 1086–1091

    Article  Google Scholar 

  10. P. Jia, J. Zhang, H. Geng, X. Teng, D. Zhao, Z. Yang, Y. Wang, S. Hu, J. Xiang, and X. Hu, High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum, Met. Mater. Inter., 2018, 24, p 1262–1274

    Article  Google Scholar 

  11. R. Dai, J.F. Zhang, S.G. Zhang, and J.G. Li, Liquid Immiscibility and Core-Shell Morphology Formation in Ternary Al-Bi-Sn Alloys, Mater. Charact., 2013, 81, p 49–55

    Article  Google Scholar 

  12. W. Chen, L. Mingyang, J. Peng, L. Rongxue, C. Shujing, and G. Haoran, Solidification of Immiscible Al75Bi9Sn16 Alloy with Different Cooling Rates, J. Alloys Compd., 2016, 688, p 18–22

    Article  Google Scholar 

  13. L. Wang, S. Li, L. Bo, D. Wu, and D. Zhao, Liquid–Liquid Phase Separation and Solidification Behavior of Al-Bi-Sn Monotectic Alloy, J. Mol. Liq., 2018, 254, p 333–339

    Article  Google Scholar 

  14. T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti, and A. Garcia, The effect of Microstructure Length Scale on Dry Sliding Wear Behaviour of Monotectic Al-Bi-Sn Alloys, J. Alloys Compd., 2016, 689, p 767–776

    Article  Google Scholar 

  15. Metals Handbook, 10th Ed., v.2, ASM Handbook Committee, American Society for Metals, USA, 1990

  16. Metals Handbook, 9th Ed., v.2, ASM Handbook Committee, American Society for Metals, USA, 1979

  17. Z. Li, Z. Zhang, and X.-G. Chen, The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy, Metals-Basel, 2018, 8, p 155. https://doi.org/10.3390/met8030155

    Article  Google Scholar 

  18. D. Mirkovic, J. Grobner, and R. Schmid-Fetzer, Solidification Paths of Multicomponent Monotectic Aluminum Alloys, Acta Mater., 2008, 56, p 5214–5222

    Article  Google Scholar 

  19. J. Grobner, D. Mirkovic, and R. Schmid-Fetzer, Phase Formation in Multicomponent Monotectic Al-based Alloys, Phase Transformations in Multicomponent Melts, D.M. Herlach, Ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, p 1–17

    Google Scholar 

  20. J. Grobner, D. Mirkovic, and R. Schmid-Fetzer, Monotectic Four-Phase Reaction in Al-Bi-Zn Alloys, Acta Mater., 2005, 53, p 3271–3280

    Article  Google Scholar 

  21. S. Engin, U. Boyük, and N. Marasli, The Effects of Microstructure and Growth Rate on Microhardness, Tensile Strength and Electrical Resistivity for Directionally Solidified Al-Ni-Fe Alloys, J. Alloys Compd., 2016, 660, p 23–31

    Article  Google Scholar 

  22. E. Çadirli, U. Boyük, S. Engin, H. Kaya, N. Marasli, K. Keslioglu, and A. Ülgen, Investigation of the Effect of Solidification Processing Parameters on the Rod Spacings and Variation of Microhardness with the Rod Spacing in the Sn-Cu Hypereutectic Alloy, J. Mater. Sci.: Mater. Electron., 2010, 21, p 608–618

    Google Scholar 

  23. W.R. Osorio, E.S. Freitas, and A. Garcia, Corrosion Performance Based on Microstructural Array of Al-Based Monotectic Alloys in a NaCl Solution, J. Mater. Eng. Perform., 2014, 23, p 333–341

    Article  Google Scholar 

  24. C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, and A. Garcia, Cellular/Dendritic Arrays and Intermetallic Phases Affecting Corrosion and Mechanical Resistances of an Al-Mg-Si Alloy, J. Alloys Compd., 2016, 673, p 220–230

    Article  Google Scholar 

  25. E.S. Freitas, J.E. Spinelli, L.C. Casteletti, and A. Garcia, Microstructure-Wear Behavior Correlation on a Directionally Solidified Al-In Monotectic Alloy, Tribol. Int., 2013, 66, p 182–186

    Article  Google Scholar 

  26. E.S. Freitas, A.P. Silva, J.E. Spinelli, L.C. Casteletti, and A. Garcia, Inter-Relation of Microstructural Features and Dry Sliding Wear Behavior of Monotectic Al-Bi and Al-Pb Alloys, Tribol. Lett., 2014, 55, p 111–120

    Article  Google Scholar 

  27. T. Man, L. Zhang, Z. Xiang, W. Wang, M. Huang, and E. Wang, Improvement of Microstructure and Wear Property of Al-Bi Alloys by Nd Addition, JOM, 2017, https://doi.org/10.1007/s11837-017-2613-2

    Google Scholar 

  28. T. Costa, E.S. Freitas, M. Dias, C. Brito, N. Cheung, and A. Garcia, Monotectic Al-Bi- Sn Alloys Directionally Solidified: Effects of Bi Content, Growth Rate and Cooling Rate on the Microstructural Evolution and Hardness, J. Alloys Compd., 2015, 653, p 243–254

    Article  Google Scholar 

  29. M.V. Cante, J.E. Spinelli, N. Cheung, and A. Garcia, The Correlation Between Dendritic Microstructure and Mechanical Properties of Directionally Solidified Hypoeutectic Al-Ni Alloys, Met. Mater. Int., 2010, 16, p 39–49

    Article  Google Scholar 

  30. A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, and A. Garcia, Microstructural Development During Transient Directional Solidification of a Hypermonotectic Al-Bi Alloy, Mater. Des., 2010, 31, p 4584–4591

    Article  Google Scholar 

  31. K.S. Cruz, E.S. Meza, F.A.P. Fernandes, J.M.V. Quaresma, L.C. Casteletti, and A. Garcia, Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified Under Unsteady-State Conditions, Met. Mater. Trans. A, 2010, 41, p 972–984

    Article  Google Scholar 

  32. T. Savaskan and O. Bican, Dry Sliding Friction and Wear Properties of Al-25Zn-3Cu-3Si Alloy, Tribol. Int., 2010, 43, p 1346–1352

    Article  Google Scholar 

  33. Y.J. Dong and H.M. Wang, Microstructure and Dry Sliding Wear Resistance of Laser Clad TiC Reinforced Ti-Ni-Si Intermetallic Composite Coating, Surf. Coat. Technol., 2009, 204, p 731–735

    Article  Google Scholar 

  34. A.P. Silva, J.E. Spinelli, and A. Garcia, Thermal Parameters and Microstructure During Transient Directional Solidification of a Monotectic Al-Bi Alloy, J. Alloys Compd., 2009, 475, p 347–351

    Article  Google Scholar 

  35. T. Wang, F. Cao, Z. Chen, H. Kang, J. Zhu, Y. Fu, T. Xiao, and T. Li, Three Dimensional Microstructures and Wear Resistance of Al-Bi Immiscible Alloys with Different Grain Refiners, Sci. China Technol. Sci., 2015, 58, p 870–875

    Article  Google Scholar 

  36. G.W. Stachowiak, Wear Materials, Mechanisms and Practice, Tribology in Practice Series Wiley, Hoboken, 2006, p 9–17

    Google Scholar 

  37. K.G. Budinski, Guide to Friction, Wear and Erosion Testing, ASTM Stock Number: MNL56, ASTM International, West Conshohocken, 2007, p 86–94

    Google Scholar 

  38. D.R. Lide, Ed., Handbook of Aluminium and Aluminium Alloys, CRC Press, Boca Raton, FL, 1992, p 852

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP (São Paulo Research Foundation, Brazil: Grant 2017/12741-6) and CNPq- National Council for Scientific and Technological Development, for their financial support.

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Spinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, R.V., Pinotti, V.E., Afonso, C.R.M. et al. Processing, As-Cast Microstructure and Wear Characteristics of a Monotectic Al-Bi-Cu Alloy. J. of Materi Eng and Perform 28, 1201–1212 (2019). https://doi.org/10.1007/s11665-018-3851-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3851-3

Keywords

Navigation