Skip to main content

Advertisement

Log in

Improvement of Microstructure and Mechanical Properties of CoCrCuFeNi High-Entropy Alloys By V Addition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

V element had positive effect in improving the strength of many alloys, so it was possible that V had potential to strengthen CoCrCuFeNi high-entropy alloys (HEAs) with face-centered cubic (FCC) crystal structure, which was relatively weak in strength and had outstanding ductility. In this paper, we studied the alloying effect of V on the phase evolution, microstructure and the mechanical properties of the (CoCrCuFeNi)100−xVx (x = 0-16, atomic ratio, hereafter in at.%) HEAs systematically. The results showed that V element had capacity to induce sigma phase precipitation. The volume fraction of sigma phase increased from 0 to 12%; the compressive yield stress of (CoCrCuFeNi)100−xVx HEAs increased from 300 to 613 MPa with V content increasing from 0 to 16% (atomic ratio, hereafter in at.%). However, the compression fracture strain decreased from 50 to 28%. V addition was beneficial in improving the strength of CoCrCuFeNi HEA, and the increase in sigma phase volume fraction was the key factor for the improvement of the (CoCrCuFeNi)100−xVx HEAs in yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218

    Article  Google Scholar 

  3. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, and Z.F. Zhang, Enhanced Strength and Ductility of Bulk CoCrFeMnNi High Entropy Alloy Having Fully Recrystallized Ultrafine-Grained Structure, Mater. Des., 2017, 133, p 122–127

    Article  Google Scholar 

  4. Y. Liu, Y. Zhang, H. Zhang, N. Wang, X. Chen, H. Zhang, and Y. Li, Microstructure and Mechanical Properties of Refractory HfMo0.5NbTiV0.5Six High-Entropy Composites, J. Alloys Compd., 2017, 694, p 869–876

    Article  Google Scholar 

  5. X.W. Liu, L. Liu, G. Liu, X.X. Wu, D.H. Lu, J.Q. Yao, W.M. Jiang, Z.T. Fan, and W.B. Zhang, The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys, Metall. Mater. Trans. A, 2018, 49, p 2151–2160

    Article  Google Scholar 

  6. Y. Zhang, T.T. Zuo, Z. Tang, Z. Tang, M. Gao, K. Dahmen, P. Liaw, and Z. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  7. Y. Zhang, Y. Liu, Y. Li, X. Chen, and H. Zhang, Microstructure and Mechanical Properties of a Refractory HfNbTiVSi0.5 High-Entropy Alloy Composite, Mater. Lett., 2016, 174, p 82–85

    Article  Google Scholar 

  8. S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, and Z.F. Zhang, Transition of Twinning Behavior in CoCrFeMnNi High Entropy Alloy with Grain Refinement, Mater. Sci. Eng. A, 2018, 712, p 603–607

    Article  Google Scholar 

  9. L. Yuan, C. Min, Y. Li, and X. Chen, Microstructure and Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloys, Rare Metal Mater. Eng., 2009, 38, p 1602–1607

    Google Scholar 

  10. Y. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200

    Article  Google Scholar 

  11. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li, Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater., 2017, 124, p 143–150

    Article  Google Scholar 

  12. X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, and Y. Zhao, Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Acta Mater., 2007, 141, p 59–66

    Article  Google Scholar 

  13. B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression, J. Mater. Eng. Perform., 2016, 25, p 2985–2992

    Article  Google Scholar 

  14. C. Zhang, G.F. Wu, and P.Q. Dai, Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2, High-Entropy Alloy. J. Mater. Eng. Perform., 2015, 24, p 1918–1925

    Article  Google Scholar 

  15. J.Q. Yao, X.W. Liu, N. Gao, Q.H. Jiang, N. Li, G. Liu, W.B. Zhang, and Z.T. Fan, Phase Stability of a Ductile Single-Phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr Refractory High-Entropy Alloy, Intermetallics, 2018, 98, p 79–88

    Article  Google Scholar 

  16. R. Chen, G. Qin, H. Zheng, L. Wang, S. Yanqing, Y. Chiu, H. Ding, J. Guo, and F. Hengzhi, Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137

    Article  Google Scholar 

  17. G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, S. Yanqing, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100−xCox High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205

    Article  Google Scholar 

  18. G. Qin, S. Wang, R. Chen, X. Gong, L. Wang, Y. Su, J. Guo, and H. Fu, Microstructures and Mechanical Properties of Nb-Alloyed CoCrCuFeNi High-Entropy Alloys, J. Mater. Sci. Technol., 2018, 34, p 365–369

    Article  Google Scholar 

  19. X. Jin, Y. Zhou, L. Zhang, and X.B. Li, A New Pseudo Binary Strategy to Design Eutectic High Entropy Alloys Using Mixing Enthalpy and Valence Electron Concentration, Mater. Des., 2018, 143, p 49–55

    Article  Google Scholar 

  20. L. Zhang, Y. Zhou, X. Jin, X. Du, and B. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scr. Mater., 2018, 146, p 226–230

    Article  Google Scholar 

  21. Y. Dong, L. Jiang, Z. Tang, Y. Lu, and T. Li, Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2, High-Entropy Alloy. J. Mater. Eng. Perform., 2015, 24, p 4475–4481

    Article  Google Scholar 

  22. L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25, p 2255–2260

    Article  Google Scholar 

  23. A. Li, D. Ma, and Q. Zheng, Effect of Cr on Microstructure and Properties of a Series of AlTiCrx FeCoNiCu High-Entropy Alloys, J. Mater. Eng. Perform., 2014, 23, p 1197–1203

    Article  Google Scholar 

  24. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, Effect of V Content on Microstructure and Mechanical Properties Of the CoCrFeMnNiVx, High Entropy Alloys, J. Alloys Compd., 2015, 628, p 170–185

    Article  Google Scholar 

  25. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTix Alloys, Intermetallics, 2007, 15, p 357–362

    Article  Google Scholar 

  26. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113

    Article  Google Scholar 

  27. B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Effects of Mn, Ti and V on the Microstructure and Properties of AlCrFeCoNiCu High Entropy Alloy, Mater. Sci. Eng. A, 2008, 498(1–2), p 482–486

    Article  Google Scholar 

  28. Y. Dong, K. Zhou, Y. Lu, X. Gao, T.M. Wang, and T. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72

    Article  Google Scholar 

  29. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.-H. Lai, and J.W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26(7), p 44–51

    Article  Google Scholar 

  30. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, and M.W. Chen, Ductile CoCrFeNiMox High Entropy Alloys Strengthened By Hard Intermetallic Phases, Acta Mater., 2016, 116, p 332–342

    Article  Google Scholar 

  31. F. He, Z. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu, Designing Eutectic High Entropy Alloys of CoCrFeNiNbx, J. Alloys Compd., 2015, 656, p 284–289

    Article  Google Scholar 

  32. S.G. Ma and Y. Zhang, Effect of Nb Addition on the Microstructure And Properties of AlCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2012, 532, p 480–486

    Article  Google Scholar 

  33. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538

    Article  Google Scholar 

  34. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb Additions on the Microstructure and Mechanical Property of CoCrFeNi High-Entropy Alloys, Intermetallics, 2015, 60, p 1–8

    Article  Google Scholar 

  35. J. Chen, P. Niu, Y. Liu, and J. Liu, Effect of Zr Content on Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2016, 94, p 39–44

    Article  Google Scholar 

  36. T. Egami and Y. Waseda, Atomic Size Effect on the Formability of Metallic Glasses, J. Non-Cryst. Solids, 1984, 64, p 113–134

    Article  Google Scholar 

  37. W. Jackson, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater. Lett., 2015, 138, p 78–80

    Article  Google Scholar 

  38. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Synthesis and Properties of Multiprincipal Component AlCoCrFeNiSix, Alloys. Mater. Sci. Eng. A, 2010, 527, p 7210–7214

    Article  Google Scholar 

  39. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys., 2012, 132, p 233–238

    Article  Google Scholar 

  40. Z. Li, K.G. Pradeep, and Y. Deng, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-off, Nature, 2016, 534, p 227–230

    Article  Google Scholar 

  41. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao, Guidelines in Predicting Phase Formation of High-Entropy Alloys, Mrs Commun., 2014, 42, p 57–62

    Article  Google Scholar 

  42. S.W. Tsai, Theory of Composites Design, Think Composites Press, 1992

  43. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 645–647

    Google Scholar 

  44. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. : Mater. Int., 2011, 21, p 433–446

    Article  Google Scholar 

  45. S. Fang, X. Xiao, X. Lei, W. Li, and Y. Dong, Relationship Between the Widths of Supercooled Liquid Regions and Bond Parameters of Mg-Based Bulk Metallic Glasses, J. Non-Cryst. Solids, 2003, 321(1), p 120–125

    Article  Google Scholar 

  46. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Ye, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1, p 207–212

    Article  Google Scholar 

  47. M.H. Tsai, K.C. Chang, J.H. Li, J.H. Li, R.C. Tsai, and A.C. Hung, A Second Criterion for Sigma Phase Formation in High-Entropy Alloys, Mater. Res. Lett., 2016, 4, p 1–6

    Article  Google Scholar 

  48. R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18, p 333

    Article  Google Scholar 

  49. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys, Phys. Rev. X, 2015, 5, p 1–6

    Google Scholar 

  50. N. Yurchenko, N. Stepanov, and G. Salishchev, Laves-Phase Formation Criterion for High-Entropy Alloys, Met. Sci. J., 2016, 33, p 17–22

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Fund of State Key Laboratory of Advanced Welding and Joining and National Key Research and Development Program of China (2017YFA0403804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruirun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Wang, S., Chen, R. et al. Improvement of Microstructure and Mechanical Properties of CoCrCuFeNi High-Entropy Alloys By V Addition. J. of Materi Eng and Perform 28, 1049–1056 (2019). https://doi.org/10.1007/s11665-018-3837-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3837-1

Keywords

Navigation