Skip to main content
Log in

Fatigue Crack Propagation of Nickel-Based Superalloy: Experiments and Simulations with Extended Finite Element Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Numerical simulation based on extended finite element method was employed to investigate the fatigue crack propagation of nickel-based superalloy at room temperature. Experimental tests on compact tension specimens have performed to obtain fatigue crack propagation parameters in Paris region. The extended finite element method has presented a new approach to solve the stress intensity factors and can effectively predict crack propagation without re-meshing at crack tip. The simulation results are in good accordance with experimental data in real 3D cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Makuch and M. Kulka, Fracture Toughness of Hard Ceramic Phases Produced on Nimonic 80A-Alloy by Gas Boriding, Ceram. Int., 2016, 42((2, Part B)), p 3275–3289

    Article  Google Scholar 

  2. K. Tokaji, S. Takafuji, K. Ohya, Y. Kato, and K. Mori, Fatigue Behaviour of Beta Ti-22V-4Al Alloy Subjected to Surface-Microstructural Modification, Journal of Materials Science, 2003, 38(6), p 1153–1159

    Article  Google Scholar 

  3. K.-B. Shiozawa, Y. Tohda, and S.M. Sun, Crack Initiation and Small Fatigue Crack Growth Behaviour of Squeeze-Cast Al-Si Aluminium Alloys, Fatigue Fract. Eng. Mater. Struct., 1997, 20(2), p 237–247

    Article  Google Scholar 

  4. S.M. Beden, S. Abdullah, and A.K. Ariffin, Review of Fatigue Crack Propagation Models for Metallic Components, Eur. J. Sci. Res., 2009, 28(3), p 364–397

    Google Scholar 

  5. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85(4), p 528–533

    Article  Google Scholar 

  6. Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987

    Google Scholar 

  7. T.L. Anderso, Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton, 2005

    Book  Google Scholar 

  8. J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 1968, 35(2), p 379–386

    Article  Google Scholar 

  9. C.F. Shih and R.J. Asaro, Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding, J. Appl. Mech., 1988, 55(2), p 299–316

    Article  Google Scholar 

  10. S. Liu, C. Liu, Y. Hu, S. Gao, Y. Wang, and H. Zhang, Fatigue Life Assessment of Centrifugal Compressor Impeller Based on FEA, Eng. Fail. Anal., 2016, 60, p 383–390

    Article  Google Scholar 

  11. V. Chaves, C. Madrigal, and A. Navarro, Fatigue Limit Predictions at Stress Concentrations Using FEA and Microstructural Fracture Mechanics, Theor. Appl. Fract. Mech., 2017, 87, p 11–20

    Article  Google Scholar 

  12. P. Zerres and M. Vormwald, Finite Element Based Simulation of Fatigue Crack Growth with a Focus on Elastic-Plastic Material Behavior, Comput. Mater. Sci., 2012, 57, p 73–79

    Article  Google Scholar 

  13. H. Pathak, A. Singh, and I.V. Singh, Fatigue Crack Growth Simulations of 3-D Problems Using XFEM, Int. J. Mech. Sci., 2013, 76, p 112–131

    Article  Google Scholar 

  14. T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Meth. Eng., 1999, 45(5), p 601–620

    Article  Google Scholar 

  15. M.L. Benzeggagh and M. Kenane, Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Sci. Technol., 1996, 56(4), p 439–449

    Article  Google Scholar 

  16. B. Wang, H. De Backer, and A. Chen, An XFEM Based Uncertainty Study on Crack Growth in Welded Joints with Defects, Theor. Appl. Fract. Mech., 2016, 86, Part B, p 125–142

    Article  Google Scholar 

  17. S. Bhattacharya and K. Sharma, Fatigue Crack Growth Simulations of FGM Plate under Cyclic Thermal Load by XFEM, Proc. Eng., 2014, 86(Supplement C), p 727–731

    Article  Google Scholar 

  18. H. Pathak, A. Singh, and I.V. Singh, Fatigue Crack Growth Simulations of 3-D Problems Using XFEM, Int. J. Mech. Sci., 2013, 76(11), p 112–131

    Article  Google Scholar 

  19. P.A. Wawrzynek and A.R. Ingraffea, Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach, Theor. Appl. Fract. Mech., 1987, 8(2), p 137–150.

    Article  Google Scholar 

  20. H. Zhang, C. Huang, Z. Guan, J. Li, Y. Liu, R. Chen, and Q. Wang, Effects of the Electron Beam Welding Process on the Microstructure, Tensile, Fatigue and Fracture Properties of Nickel Alloy Nimonic 80A, J. Mater. Eng. Perform., 2018, 27(1), p 89–98

    Article  Google Scholar 

  21. ASTM, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM E647-2013a, 2013

  22. S. Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishing, New York, 2008

    Book  Google Scholar 

  23. P. Elisa, Virtual Crack Closure Technique and Finite Element Method for Predicting the Delamination Growth Initiation in Composite Structures, Advances in Composite Materials-Analysis of Natural and Man-Made Materialsed, InTech, 2011

    Book  Google Scholar 

  24. A. Bergara, J.I. Dorado, A. Martin-Meizoso, and J.M. Martínez-Esnaola, Fatigue Crack Propagation in Complex Stress Fields: Experiments and Numerical Simulations Using the Extended Finite Element Method (XFEM), Int. J. Fatigue, 2017, 103(Supplement C), p 112–121

    Article  Google Scholar 

  25. V. Tvergaard, On Fatigue Crack Growth in Ductile Materials by Crack–Tip Blunting, J. Mech. Phys. Solids, 2004, 52(9), p 2149–2166

    Article  Google Scholar 

  26. K.A. Rozman, J.J. Kruzic, and J.A. Hawk, Fatigue Crack Growth Behavior of Nickel-Base Superalloy Haynes 282 at 550–750 °C, J. Mater. Eng. Perform., 2015, 24(8), p 2841–2846

    Article  Google Scholar 

  27. F. Farukh, L. Zhao, R. Jiang, P. Reed, D. Proprentner, and B. Shollock, Fatigue Crack Growth in a Nickel-Based Superalloy at Elevated Temperature—Experimental Studies, Viscoplasticity Modelling and XFEM Predictions, Mechanics of Advanced Materials & Modern Processes, 2015, 1(1), p 2

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Research Foundation of China (Nos. 11327801, 11502151, 11572057), the Program for Changjiang Scholars and Innovative Research Team (No. IRT14R37), and Key Science and Technology Support Program of Sichuan Province (No. 2015JPT0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyuan Wang or Yongjie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, P., Wang, Q. et al. Fatigue Crack Propagation of Nickel-Based Superalloy: Experiments and Simulations with Extended Finite Element Method. J. of Materi Eng and Perform 28, 967–972 (2019). https://doi.org/10.1007/s11665-018-3818-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3818-4

Keywords

Navigation