Skip to main content
Log in

Micromechanical Modeling and Investigating the Effect of Particle Size and the Interface of Phases on the Mechanical Behavior of Dual-Phase Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Dual-phase (DP) ferrite–martensite steels have a fine microstructure that consist of martensite islands, dispersed in a ferrite matrix. In the present work, a micromechanical-based finite element (FE) analysis is carried out in order to investigate the mechanical properties of this type of steels, such as yield stress and tensile strength. The step forward contribution of the present study is to insert the effect of the presence of the interface of the constituting phases in the FE model. In order to do so, a micromechanical FE model is developed in which the effect of the interface of the constituting phases is taken into account by means of cohesive elements. The required parameters of the cohesive elements are determined by a trial and error procedure which compares the numerical results to the experimental ones. Experimental data is used to verify the created FE model. This model is then used to investigate the effect of martensite volume fraction and small-to-large particle size ratio of martensite on the deformation behavior of the DP steel. This study shows that considering the interface of the constituting phases greatly affects the numerical results on stress and strain distributions and produces more realistic findings in agreement with experiments. The results show that applying cohesive elements between two phases have reduced tensile strength, yield stress, and the amount of uniform elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.S. Rashid, GM 980X-A Unique High Strength sheet steel with Superior Formability. SAE Technical Paper No. 760206, p 938–949 (1976). https://doi.org/10.4271/760206

  2. A. Fallahi, Microstructure-Properties Correlation of Dual Phase Steels Produced by Controlled Rolling Process, J. Mater. Sci. Technol., 2002, 18, p 451–454

    CAS  Google Scholar 

  3. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine-and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670. https://doi.org/10.1016/j.actamat.2010.10.002

    Article  CAS  Google Scholar 

  4. H.P. Shen, T.C. Lei, and J.Z. Liu, Microscopic Deformation Behavior of Martensitic-Ferritic Dual-Phase Steels, J. Mater. Sci. Technol., 1986, 2, p 28–33. https://doi.org/10.1179/026708386790123576

    Article  CAS  Google Scholar 

  5. F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of the Effect of Particle Size Difference in Dual Phase Steels, Int. J. Solids Struct., 2003, 40, p 3379–3391. https://doi.org/10.1016/S0020-7683(03)00156-2

    Article  Google Scholar 

  6. F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of Dual Phase Steels, Int. J. Mech. Sci., 2003, 45, p 1449–1465. https://doi.org/10.1016/j.ijmecsci.2003.10.007

    Article  Google Scholar 

  7. F.M. Al-Abbasi and James A. Nemes, Characterizing DP-Steels Using Micromechanical Modeling of Cells, Comput. Mater. Sci., 2007, 39, p 402–415. https://doi.org/10.1016/j.commatsci.2006.07.003

    Article  CAS  Google Scholar 

  8. V. Uthaisangsuk, U. Prahl, and W. Bleck, Failure Modeling of Multiphase Steels Using Representative Volume Elements Based on Real Microstructures, Proc. Eng., 2009, 1, p 171–176. https://doi.org/10.1016/j.proeng.2009.06.040

    Article  CAS  Google Scholar 

  9. G.I. Barenblatt, The Formation of Equilibrium Cracks During Brittle Fracture: General Ideas and Hypothesis, Axially Symmetric Cracks, J. Appl. Math. Mech., 1959, 23, p 622–636. https://doi.org/10.1016/0021-8928(59)90157-1

    Article  Google Scholar 

  10. D.S. Dugdale, Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 1960, 8, p 100–104. https://doi.org/10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  11. V. Tvergaard and J.W. Hutchinson, The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids, J. Mech. Phys. Solids, 1992, 40, p 1377–1397. https://doi.org/10.1016/0022-5096(92)90020-3

    Article  Google Scholar 

  12. X.-P. Xu and A. Needleman, Numerical Simulations of Fast Crack Growth in Brittle Solids, J. Mech. Phys. Solids, 1994, 42, p 13971434. https://doi.org/10.1016/0022-5096(94)90003-5

    Article  Google Scholar 

  13. G.T. Camacho and M. Ortiz, Computational Modeling of Impact Damage in Brittle Materials, Int. J. Solids Struct., 1996, 33, p 2899–2938. https://doi.org/10.1016/0020-7683(95)00255-3

    Article  Google Scholar 

  14. H. Hosseini-Toudeshky, B. Anbarlooie, and J. Kadkhodapour, Micromechanics Stress–Strain Behavior Prediction of Dual Phase Steel Considering Plasticity and Grain Boundaries Debonding, Mater. Des., 2015, 68, p 167–176. https://doi.org/10.1016/j.matdes.2014.12.013

    Article  CAS  Google Scholar 

  15. R. Khamedi, A. Fallahi, and H. Zoghi, The Influence of Morphology and Volume Fraction of Martensite on AE Signals During Tensile Loading of Dual-Phase Steels, Int. J. Recent Trends Eng. Technol., 2009, 1, p 30–34

    Google Scholar 

  16. S. Kuang, Y. Kang, H. Yu, and R. Liu, Stress–Strain Partitioning Analysis of Constituent Phases in Dual Phase Steel Based on the Modified Law of Mixture, Int. J. Miner. Metall. Mater., 2009, 16, p 393–398. https://doi.org/10.1016/S1674-4799(09)60070-4

    Article  CAS  Google Scholar 

  17. A. Fallahi, E. Lak, and A. Nikbakht, Investigating the effect of the interface in numerical calculation of mechanical behavior of dual phase steels by using micromechanical modeling cells. The Bi-Annual International Conference on Experimental Solid Mechanics and Dynamics, Tehran, Iran, 2014

  18. E. Lak, A. Fallahi, and A. Nikbakht, Predicting the deformation behavior of dual phase steels using micromechanical modeling of cell. The 22nd Annual International Conference on Mechanical Engineering (ISME), Ahvaz, Iran, 2014

  19. H.W. Reinhardt and H.A.W. Cornelissen, Post-Peak Cyclic Behaviour of Concrete in Uniaxial and Alternating Tensile and Compressive Loading, Cem. Concr. Res., 1984, 14, p 263–270. https://doi.org/10.1016/0008-8846(84)90113-3

    Article  Google Scholar 

  20. J.W. Hutchinson and A.G. Evans, Mechanics of Materials: Top-Down Approaches to Fracture, Acta Mater., 2000, 48, p 125–135. https://doi.org/10.1016/S1359-6454(99)00291-8

    Article  CAS  Google Scholar 

  21. N. Chandra, H. Li, C. Shet, and H. Ghonem, Some Issues in the Application of Cohesive Zone Models for Metal-Ceramic Interfaces, Int. J. Solids Struct., 2002, 39, p 2827–2855. https://doi.org/10.1016/S0020-7683(02)00149-X

    Article  Google Scholar 

  22. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45, p 391–431. https://doi.org/10.1146/annurev-matsci-070214-021103

    Article  CAS  Google Scholar 

  23. R. Khamedi, A. Fallahi, and A. Refahi Oskouei, Effect of Martensite Phase Volume Fraction on Acoustic Emission Signals Using Wavelet Packet Analysis During Tensile Loading of Dual Phase Steels, Mater. Des., 2010, 31, p 2752–2759. https://doi.org/10.1016/j.matdes.2010.01.019

    Article  CAS  Google Scholar 

  24. A. Fallahi, R. Khamedi, G. Minak, and A. Zucchelli, Monitoring of the Deformation and Fracture Process of Dual Phase Steels Employing Acoustic Emission Techniques, Mater. Sci. Eng. A, 2012, 548, p 183–188. https://doi.org/10.1016/j.msea.2012.03.104

    Article  CAS  Google Scholar 

  25. A. Alaie, S. Ziaei Rad, J. Kadkhodapour, M. Jafari, M. Asadi Asadabad, and S. Schmauder, Effect of Microstructure Pattern on the Strain Localization in DP600 Steels Analyzed Using Combined In-Situ Experimental Test and Numerical Simulation, Mater. Sci. Eng. A, 2015, 638, p 251–261. https://doi.org/10.1016/j.msea.2015.04.071

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fallahi Arezodar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahi Arezodar, A., Nikbakht, A. Micromechanical Modeling and Investigating the Effect of Particle Size and the Interface of Phases on the Mechanical Behavior of Dual-Phase Steels. J. of Materi Eng and Perform 28, 53–62 (2019). https://doi.org/10.1007/s11665-018-3768-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3768-x

Keywords

Navigation