Skip to main content
Log in

Hydrogen Effect on the Fatigue Crack Growth in Austenitic Stainless Steel Investigated by a New Method Based on Nanohardness Distribution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new method of nanohardness distribution for investigating the hydrogen effect on the fatigue crack in austenitic stainless steels was developed. The nanohardness distribution around the fatigue crack tip is dependent on the plastic zone and different microstructures in materials. Nanoindentation could provide a possibility to quantitatively estimate the size of the plastic zone and to expressly identify the strain-induced α′ martensitic transformation around the fatigue crack tip. The results of measured nanohardness distribution reveal that hydrogen reduces the size of the estimated plastic zone around the fatigue crack tip, especially in the specimen tested in hydrogen gas environment, which is attributed to hydrogen-enhanced localized plasticity. Both hydrogen and α′ martensite greatly influence the nanohardness and the gradient of hydrogen concentration near the crack tip, which will have a significant effect on the fatigue crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Zhang, Z.Y. Li, J. Zheng, Y.Z. Zhao, P. Xu, C.L. Zhou, C.S. Zhou, and X.Y. Chen, Dependence of Hydrogen Embrittlement on Hydrogen in the Surface Layer in Type 304 Stainless Steel, Int. J. Hydrog. Energy, 2014, 39, p 20578–20584

    Article  CAS  Google Scholar 

  2. R. Liu, N. Narita, H. Birnbaum, and E.N. Pugh, Studies of the Orientations of Fracture Surfaces Produced in Austenitic Stainless Steels by Stress-corrosion Cracking and Hydrogen Embrittlement, Metall. Trans. A, 1980, 11, p 1563–1574

    Article  Google Scholar 

  3. T. Michler and J. Naumann, Hydrogen Environment Embrittlement of Austenitic Stainless Steels at Low Temperature, Int. J. Hydrog. Energy, 2008, 33, p 2111–2122

    Article  CAS  Google Scholar 

  4. G. Han, J. He, S. Fukuyama, and K. Yokogawa, Effect of Stain Induced Martensite on Hydrogen Environment Embrittlement of Sensitized Austenitic Stainless Steels at Low Temperatures, Acta Mater., 1998, 46, p 4559–4570

    Article  CAS  Google Scholar 

  5. W. Dietzel, The Use of Crack-Tip Opening Displacement for Testing of the Hydrogen Embrittlement of High-Strength Steels, J. Mater. Eng. Perform., 2004, 40, p 749–755

    CAS  Google Scholar 

  6. D.M. Dennj, D. Cagan, Z. Ning, and O. Erkan, Modelling of Stress-corrosion Cracking by Using Peridynamics, Int. J. Hydrog. Energy, 2016, 41, p 6593–6609

    Article  Google Scholar 

  7. M. Yukitaka and M. Saburo, Effect of Hydrogen on Fatigue Crack Growth of Metals, Eng. Fract. Mech., 2010, 77, p 1926–1940

    Article  Google Scholar 

  8. J. Yamabe, M. Yoshikawa, H. Matsunaga, and S. Matsuoka, Effects of Hydrogen Pressure, Test Frequency and Test Temperature on Fatigue Crack Growth Properties of Low-carbon Steel in Gaseous Hydrogen, Proc. Struct. Int., 2016, 2, p 525–532

    Google Scholar 

  9. S.P. Lynch, Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-induced Localised-slip Process, Acta Metall., 1988, 36, p 2639–2661

    Article  CAS  Google Scholar 

  10. K.A. Nibur, D.F. Bahr, and B.P. Somerday, Hydrogen Effects on Dislocation Activity in Austenitic Stainless Steel, Acta Mater., 2006, 54, p 2677–2684

    Article  CAS  Google Scholar 

  11. Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y.Z.B. An, X.Y. Chen, and X.H. Wang, Hydrogen Effect on the Deformation Evolution Process in Situ Detected by Nanoindentation Continuous Stiffness Measurement, Mater. Charact., 2017, 127, p p35–40

    Article  Google Scholar 

  12. B.W. Choi, D.H. Seo, and J. Jang, A Nanoindentation Study on the Micromechanical Characteristics of API, X1000 Pipeline Steel, J. Mater. Eng. Perform., 2009, 15, p 373

    CAS  Google Scholar 

  13. T.M. Wilkinsona, D. Wu, M.A. Musselmana, N. Li, N. Mara, and C.E. Packard, Mechanical Behavior of Rare-earth Orthophosphates Near the Monazite/Xenotime Boundary Characterized by Nanoindentation, Mater. Sci. Eng. A, 2017, 691, p 203–210

    Article  Google Scholar 

  14. Y. Katz, N. Tymiak, and W.W. Gerberich, Nanomechanical Probes as New Approaches to Hydrogen/Deformation Interaction Studies, Eng. Fract. Mech., 2001, 68, p 619–646

    Article  Google Scholar 

  15. L. Zhang, B. An, S. Fukuyama, and K. Yokogawa, Hydrogen Effects on Localized Plasticity in SUS310S Stainless Steel Investigated by Nanoindentation and Atomic Force microscopy, Jpn. J. Appl. Phys., 2009, 48(8), p 1–4

    CAS  Google Scholar 

  16. A. Barnoush and H. Vehoff, In Situ Electrochemical Nanoindentation: a Technique for Local Examination of Hydrogen Embrittlement, Corros. Sci., 2008, 50, p 259–267

    Article  CAS  Google Scholar 

  17. Y. Mine, K. Doi, S. Matsuoka, and Y. Murakami, The Influences of Hydrogen on Microscopic Plastic Deformation Behavior of SUS304 and SUS316L Stainless Steels, J. Soc. Mater. Sci. Jpn., 2008, 57, p 255–261

    Article  CAS  Google Scholar 

  18. T.P. Perng and C.J. Altstetter, Effects of Deformation on Hydrogen Permeation in Austenitic Stainless Steels, Acta. Metall., 1986, 34, p 1771–1781

    Article  CAS  Google Scholar 

  19. M. Dadfarnia, P. Sofronis, and T. Neeraj, Hydrogen Interaction with Multiple Traps: Can It Be Used to Mitigate Embrittlement?, Int. J. Hydrogen Energy, 2011, 36, p 10141–10148

    Article  CAS  Google Scholar 

  20. A.J. McEvily and J.L.G. Velazquez, Fatigue Crack Tip Deformation Process as Influenced by the Environment, Metall. Trans., 1992, 23, p 1992–2001

    Article  Google Scholar 

  21. Y. Murakami, T. Kanezaki, and Y.J. Mine, Hydrogen Effect Against Hydrogen Embrittlement, Metall. Mater. Trans., 2010, 21, p 2548–2562

    Article  Google Scholar 

  22. T.C. Chen, S.T. Chen, and L.W. Tsay, The Role of Induced α′ Martensite on the Hydrogen - Assisted Fatigue Crack Growth of Austenitic Stainless Steels, Int. J. Hydrog. Energy, 2014, 39, p 10293–10302

    Article  CAS  Google Scholar 

  23. T.P. Perng and C.J. Altstetter, Effects of Deformation on Hydrogen Permeation in Austenitic Stainless Steels, Acta Metall., 1986, 34, p 1771–1781

    Article  CAS  Google Scholar 

  24. X.K. Sun, J. Xu, and Y.Y. Li, Hydrogen Permeation Behavior in Metastable Austenitic Stainless Steels 321 and 304, Acta Metall., 1989, 37, p 2171–2176

    Article  CAS  Google Scholar 

  25. H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami, Effects of Hydrogen Charge on Microscopic Fatigue Behavior of Annealed Carbon Steels, Fatigue Fract. Eng. Mater. Struct., 2006, 29, p 1066–1074

    Article  CAS  Google Scholar 

  26. P. Sofronis and R. Mcmeeking, Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip, J. Mech. Phys. Solid, 1989, 37, p 317–350

    Article  Google Scholar 

  27. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Enhanced Strength-ductility Synergy in Nanostructured Cu and Cu-Al Alloys Processed by High-pressure Torsion and Subsequent Annealing, Scripta Mater., 2012, 66, p 227–230

    Article  CAS  Google Scholar 

  28. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh, Nano-sized Twins Induce High Rate Sensitivity of Flow Stress in Pure Copper, Acta Mater., 2005, 53, p 2169–2179

    Article  CAS  Google Scholar 

  29. P. Zhang, S.X. Li, and Z.F. Zhang, General Relationship Between Strength and Hardness, Mater. Sci. Eng. A, 2011, 529, p 62–73

    Article  CAS  Google Scholar 

  30. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Program of China (973 Program, Grant No. 2015CB057601), the National Natural Science Foundation of China (51571181, 51401181), and the Zhejiang Provincial Natural Science Foundation of China (LY15E010006, LQ14E010003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyang Zheng or Lin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Hong, Y., Chen, X. et al. Hydrogen Effect on the Fatigue Crack Growth in Austenitic Stainless Steel Investigated by a New Method Based on Nanohardness Distribution. J. of Materi Eng and Perform 27, 6485–6492 (2018). https://doi.org/10.1007/s11665-018-3764-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3764-1

Keywords

Navigation