Skip to main content
Log in

Effect of Dynamic Strain Aging on Tensile Deformation of 20MnMoNi55 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Results obtained from the uniaxial tensile tests of 20MnMoNi55 low-alloy RPV steel at different temperatures (varying from 27 to 450 °C) and straining rates (varying from 10−5 to 10−1 s−1) reveal that the material response is sensitive to both temperature and strain rate. For the range of temperature varying from 200 to 400 °C, in combination with different strain rates, the material shows negative strain rate sensitivity along with different kinds of serrated flow (between 200 and 310 °C), commonly termed as Portevin–Le Chatelier effect (types A, B and C). The material behavior, in that temperature–strain rate window, is described by dynamic strain aging (DSA) effect, and the changes in the mechanical properties of the material are studied. The DSA attribute of 20MnMoNi55 steel is characterized by calculating the activation energy. The x-ray diffraction technique and atomic percentage analysis using energy-dispersive x-ray suggest that the manganese influences the interstitial (carbon and/or nitrogen) diffusion by forming Mn-C and/or Mn-N pair, which can be a plausible cause of DSA in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H. Hänninen, Y. Yagodzinskyy, O. Tarasenko, H.P. Seifert, U. Ehrnstén, P. Aaltonen, Effects of Dynamic Strain Aging on Environment-Assisted Cracking of Low Alloy Pressure Vessel and Piping Steels. In Proceedings of 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Nevada, USA, 5–9 Aug 2001, ANS, NACE, TMS (2001), p. 12.

  2. S.S. Kang and I.S. Kim, Dynamic Strain-Aging Effect on Fracture Toughness of Vessel Steels, Nucl. Technol., 1992, 97, p 336–343

    Article  CAS  Google Scholar 

  3. J.D. Baird and A. Jamieson, Effects of Manganese and Nitrogen on the Tensile Properties of Iron in the Range 20-600 °C, J. Iron Steel Inst., 1966, 204, p 793–803

    CAS  Google Scholar 

  4. I.S. Kim and S.S. Kang, Dynamic Strain Aging in SA508-Class 3 Pressure Vessel Steel, Int. J. Press. Vessels Pip., 1995, 62, p 123–129

    Article  CAS  Google Scholar 

  5. W.C. Leslie and R.L. Rickett, Influence of Aluminum and Silicon Deoxidation on the Strain Aging of Low-Carbon Steels, Trans. AIME, 1983, p, p 1021–1031

    Google Scholar 

  6. D. Wagner, J.C. Moreno, C. Prioul, J.M. Frund, and B. Houssin, Influence of Dynamic Strain Aging on the Ductile Tearing of C-Mn Steels Modelling by a Local Approach Method, J. Nucl. Mater., 2002, 300, p 178–191

    Article  CAS  Google Scholar 

  7. P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663

    Article  Google Scholar 

  8. J.D. Atkinson and J.E. Forest, Factors Influencing the Rate of Growth of Fatigue Cracks in RPV Steels Exposed to a Simulated PWR Primary Water Environment, Corros. Sci., 1985, 25, p 607–631

    Article  CAS  Google Scholar 

  9. C.C. Li and W.C. Leslie, Effects of Dynamic Strain Aging on the Subsequent Mechanical Properties of Carbon Steels, Metall. Trans. A, 1978, 9, p 1765–1775

    Article  Google Scholar 

  10. C. Gupta, J.K. Chakravarty, and S. Banerjee, Microstructure and Dynamic Strain Aging Phenomena in Two Structural Steels, Mater. Sci. Technol., 2011, 27, p 1007–1012

    Article  CAS  Google Scholar 

  11. R. Onodera, T. Ishibashi, M. Koga, and M. Shimzu, The Relation Between the Portevin–Le Chatelier Effect and the Solid Solubility in Some Binary Alloys, Acta Metall., 1983, 31(No4), p 535–540

    Article  CAS  Google Scholar 

  12. C. Gupta, J.K. Chakravartty, and S. Banerjee, Microstructure, Deformation and Fracture Behavior of Cr-Mo-V Steels, Int. J. Metall. Eng., 2013, 2(2), p 142–148

    Google Scholar 

  13. E. Girault, P. Jacques, P. Harlet, K. Mols, J.V. Humbeeck, E. Aernoudt, and F. Delannay, Metallographic Methods for Revealing the Multiphase Microstructure of TRIP-Assisted Steels, Mater. Charact., 1998, 40, p 111–118

    Article  CAS  Google Scholar 

  14. A.K. De, J.G. Speer, and D.K. Matlock, Color Tint-Etching for Multiphase Steels, Adv. Mater. Process., 2003, 161, p 27–30

    CAS  Google Scholar 

  15. M.J. Santofimia, L. Zhao, R. Petrov, and J. Sietsma, Characterization of the Microstructure Obtained by the Quenching and Partitioning Process in a Low-Carbon Steel, Mater. Charact., 2008, 59, p 1758–1764

    Article  CAS  Google Scholar 

  16. P. Basu, S.K. Acharyya, and P. Sahoo, A Correlation Study Between Mechanical Properties and Morphological Variation of 20MnMoNi55 Steel, Silicon, 2018, 10(4), p 1257–1264

    Article  CAS  Google Scholar 

  17. C. Gupta, B. Kumawat, and J.K. Chakravartty, Descriptors of Temporal Signatures of Serrations in a Low Alloy Steel, Mater. Sci. Eng. A, 2014, 620, p 407–410

    Article  CAS  Google Scholar 

  18. S. Bhowmik, S.K. Acharyya, P. Sahoo, S. Dhar, and J. Chattopadhyay, Estimation and Comparative Study of J IC Using Different Methods for 20MnMoNi55 Steel, Mater. Des., 2013, 46, p 680–687

    Article  CAS  Google Scholar 

  19. K. Gopinath, A.K. Gogia, S.V. Kamat, and U. Ramamurty, Dynamic Strain Ageing in Ni-Base Superalloy 720Li, Acta Metall., 2009, 57, p 1243–1253

    CAS  Google Scholar 

  20. B.K. Choudhary, Influence of Strain Rate and Temperature on Serrated flow in 9Cr-1Mo Ferritic Steel, Mater. Sci. Eng. A, 2013, 564, p 303–309

    Article  CAS  Google Scholar 

  21. C.L. Hale, W.S. Rollings, and M.L. Weaver, Activation Energy Calculations for Discontinuous Yielding in Inconel 718SPF, Mater. Sci. Eng. A, 2001, 300, p 153–164

    Article  Google Scholar 

  22. M. Lebyodkin, Y. Brechet, Y. Estrin, and L. Kubin, Statistical Behaviour and Strain Localization Patterns in the Portevin–Le Chatelier Effect, Acta Mater., 1996, 44(11), p 4531–4541

    Article  CAS  Google Scholar 

  23. G.M. Han, C.G. Tian, C.Y. Cui, Z.Q. Hu, and X.F. Sun, Portevin–Le Chatelier Effect in Nimonic 263 Superalloy, Acta Metall. Sin. (Engl. Lett.), 2015, 28(5), p 542–549

    Article  CAS  Google Scholar 

  24. Y. Brechet and Y. Estrin, On the Influence of Precipitation on the Portevin–Le Chatelier Effect, Acta Metall. Mater., 1995, 43(3), p 955–963

    Article  CAS  Google Scholar 

  25. P.G. McCormick, A Model for the Portevin–le chatelier Effect in Substitutional Alloys, Acta Metall., 1972, 20, p 351–354

    Article  CAS  Google Scholar 

  26. J.M. Akhgar and S. Serajzadeh, Flow Behavior and Mechanical Properties of a High Silicon Steel Associated with Dynamic Strain Aging, J. Mater. Eng. Perform., 2012, 21, p 1919–1923

    Article  CAS  Google Scholar 

  27. V.C. Igwemezie, C.C. Ugwuegbu, and U. Mark, Physical Metallurgy of Modern Creep-Resistant Steel for Steam Power Plants: Microstructure and Phase Transformations, J. Metall., 2016, 2016, p 1–19

    Article  Google Scholar 

  28. Z. Yongtao, M. Lede, W. Xiaojun, Z. Hanqian, and L. Jinfu, Evolution Behavior of Carbides in 2.25Cr-1Mo-0.25V Steel, Mater. Trans., 2009, 50(11), p 2507–2511

    Article  Google Scholar 

  29. S. Fu, T. Cheng, Q. Zhang, Q. Hu, and P. Cao, Two Mechanisms for the Normal and Inverse Behaviors of the Critical Strain for the Portevin–Le Chatelier Effect, Acta Mater., 2012, 60, p 6650–6656

    Article  CAS  Google Scholar 

  30. B.M. Gonzalez, L.A. Marchi, E.J. Fonseca, P.J. Modenesi, and V.T.L. Buono, Measurement of Dynamic Strain Aging in Pearlitic Steels by Tensile Test, ISIJ Int., 2003, 43(3), p 428–432

    Article  CAS  Google Scholar 

  31. R.R.U. Queiroz, F.G.G. Cunha, and B.M. Gonzalez, Study of Dynamic Strain Aging in Dual Phase Steel, Mater. Sci. Eng. A, 2012, 543, p 84–87

    Article  CAS  Google Scholar 

  32. J.W. Kim and I.S. Kim, Investigation of Dynamic Strain Aging in SA106 Gr.C Piping Steel, Nucl. Eng. Des., 1997, 172, p 49–59

    Article  CAS  Google Scholar 

  33. Y.N. Dastur and W.C. Leslie, Mechanism of Work Hardening in Hadfield Manganese Steel, Metall. Trans. A, 1981, 12A, p 749–759

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai-400085, India, for providing the material 20MnMoNi55 low-alloy RPV steel. The authors would also like to acknowledge the financial support provided by the Centre of Excellence in Phase Transformation and Product Characterisation, Jadavpur University, Kolkata-700032, India (Ref. No.: P-1/RS/275/14), for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Jana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, M., Dhar, S., Acharyya, S.K. et al. Effect of Dynamic Strain Aging on Tensile Deformation of 20MnMoNi55 Alloy. J. of Materi Eng and Perform 27, 6468–6478 (2018). https://doi.org/10.1007/s11665-018-3763-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3763-2

Keywords

Navigation