Skip to main content
Log in

The Improved Thermal Conductivity of a Potting Material for High-Power Fast Warm-Up Cathodes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

With higher power, frequency and longer life of microwave tubes, cathode heater assembly is being modified to enhance the warm-up performance and reliability, which are governed by ceramics thermal conductivity, electrical resistivity and shrinkage. In present work, a potting material with a high thermal conductivity of 22.14 W/(m K) and low linear shrinkage of 5.5% was prepared using two kinds of alumina powders with different size and morphology. Aqueous slurries were produced for centrifugal casting. The highest solid loading slurries with 70 vol.% were obtained. Green body with relative density above 70% was easily made from slurries using centrifugal casting. Relative sintered density reached 86.75% maximum without any sintering aids. Rheological behavior of slurries, potting microstructure, sintering shrinkage and thermal conductivity were analyzed. Continuous particle distribution, series and parallel models were used to guide the powders proportion and explain the thermal conductivity. The potting material thermal conductivity experimental data agreed with the series and parallel models when the weight parameter ξ was between 0.3 and 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.S. Orlowska, Fast warm cathode—practical fielded design, in National Vacuum Electronics Conference (Surrey Ion Beam Centre, 2007)

  2. K.S. Pal, S. Ghosh, N. Dandapat, S. Datta, D. Basu, and R.S. Raju, Development of Suitable Potting Material for Dispenser Cathodes of a High Power Microwave Tube, Mater. Sci. Eng. B, 2012, 177(2), p 228–232

    Article  CAS  Google Scholar 

  3. P. Swartzentruber, M. Collier, R. Dewees, and W. Epperson, Alternative ceramic potting materials for dispenser cathodes, in Vacuum Electronics Conference (2012), pp. 483–484

  4. C.W. Park and D.Y. Yoon, Effect of SiO2, CaO2 and MgO Addition on the Grain Growth of Alumina, J. Am. Ceram. Soc., 2000, 83(10), p 2605–2609

    Article  CAS  Google Scholar 

  5. L. Wolverton, J.O. Tarter, R.E. Eitel, and M. Weisenberger, P1–33: Thermal properties of alumina cathode heater potting materials, in Vacuum Electronics Conference (IVEC), (2010), p. 165

  6. L.R. Falce, Dispenser cathodes: The current state of the technology, in International Electron Devices Meeting (1983), pp. 448–451

  7. G.L. Messing and G.Y. Onoda, Inhomogeneity-Packing Density Relations in Binary Powders—Experimental Studies, J. Am. Ceram. Soc., 1978, 61(7–8), p 363–366

    Article  Google Scholar 

  8. J.A. Dodds, The Porosity and Contact Points in Multicomponent Random Sphere Packings Calculated by a Simple Statistical Geometric Model, J. Colloid Interface Sci., 1980, 77(2), p 317–327

    Article  CAS  Google Scholar 

  9. J. Funk and D. Dinger, Packing of Discrete Versus Continuous Particle Size Distributions, Interceramic, 1992, 41(5), p 332–334

    Google Scholar 

  10. J. Funk and D. Dinger, Fundamentals of Particle Packing, Monodisperse Spheres, Interceramic, 1992, 41(1), p 10–14

    Google Scholar 

  11. J. Funk and D. Dinger, Review of Packing in Polydisperse Particle Systems, Interceramic, 1992, 41(2), p 95–97

    Google Scholar 

  12. J. Funk and D. Dinger, Computer Modelling of Particle Packing Phenomena, Interceramic, 1993, 42(3), p 150–153

    Google Scholar 

  13. J. Zheng, W.B. Carlson, and J.S. Reed, The Packing Density of Binary Powder Mixtures, J. Eur. Ceram. Soc., 1995, 15(5), p 479–483

    Article  CAS  Google Scholar 

  14. K.R. McGeary, Mechanical Packing of Spherical Particles, J. Am. Ceram. Soc., 1961, 44(10), p 513–522

    Article  CAS  Google Scholar 

  15. A.B. Yu, N. Standish, and A. Mclean, Porosity Calculation of Binary Mixtures of Nonspherical Particles, J. Am. Ceram. Soc., 1993, 76(11), p 2813–2816

    Article  CAS  Google Scholar 

  16. P.A. Smith and R.A. Haber, Effect of Particle Packing on the Filtration and Rheology Behavior of Extended Size Distribution Alumina Suspensions, J. Am. Ceram. Soc., 1995, 78(7), p 1737–1744

    Article  CAS  Google Scholar 

  17. S. Taruta, N. Takusagawa, K. Okada, N. Otsuka, S. Taruta, N. Takusagawa, K. Okada, and N. Otsuka, Slip Casting of Alumina Powder Mixtures with Bimodal Size Distribution, J. Ceram. Soc. Jpn., 1996, 104(1209), p 447–450

    Article  CAS  Google Scholar 

  18. G.T. Igrave, J.M.F. Ferreira, A.T. Fonseca, and O. Lyckfeldt, Influence of Particle Size Distribution on Colloidal Processing of Alumina, J. Eur. Ceram. Soc., 1998, 18(3), p 249–253

    Article  Google Scholar 

  19. J.M.F. Ferreira and H.M.M. Diz, Pressure Slip Casting of Bimodal Silicon Carbide Powder Suspensions, Ceram. Int., 1999, 25(6), p 491–495

    Article  CAS  Google Scholar 

  20. G. Tari, J.M.F. Ferreira, and A.T. Fonseca, Influence of Particle Size and Particle Size Distribution On Drying-Shrinkage Behaviour of Alumina Slip Cast Bodies, Ceram. Int., 1999, 25(6), p 577–580

    Article  CAS  Google Scholar 

  21. S. Taruta, Y. Sakurai, N. Takusagawa, K. Okada, and N. Otsuka, Slip Casting of Alumina Powder Mixtures with Bimodal Size Distribution: Influence of Particle Size Difference Between Fine and Coarse Powders on Packing and Consolidation Process, J. Ceram. Soc. Jpn., 2000, 108, p 254–260

    Article  CAS  Google Scholar 

  22. J.U. Chenhui, W. Yanmin, Y.E. Jiandong, L.I. Xinheng, W. Yanmin, Y.E. Jiandong, and L.I. Xinheng, Effect of Particle Size Distribution on the Rheological Behavior of Dense Alumina Suspensions, J. Chin. Ceram. Soc., 2006, 34(8), p 985–991 (in Chinese)

    Google Scholar 

  23. W. Qi, C. Wei, G. Yiyao, and X. Zhipeng, Preparation and Sintering Properties of Alumina Slurries with High Solid Loading, Rare Metal Mat. Eng., 2013, 42(S1), p 400–403 (in Chinese)

    Google Scholar 

  24. Y. Sun, S. Shimai, X. Peng, M. Dong, H. Kamiya, and S. Wang, A Method for Gelcasting High-Strength Alumina Ceramics with Low Shrinkage, J. Mater. Res., 2014, 29(02), p 247–251

    Article  CAS  Google Scholar 

  25. A. Heunisch, A. Dellert, and A. Roosen, Effect of Powder, Binder and Process Parameters on Anisotropic Shrinkage in Tape Cast Ceramic Products, J. Eur. Ceram. Soc., 2010, 30(16), p 3397–3406

    Article  CAS  Google Scholar 

  26. Z. Fu, P. Polfer, T. Kraft, and A. Roosen, Correlation Between Anisotropic Green Microstructure of Spherical-Shaped Alumina Particles and Their Shrinkage Behavior, J. Am. Ceram. Soc., 2015, 98(11), p 3438–3444

    Article  CAS  Google Scholar 

  27. G. Tarì, J.M.F. Ferreira, A.T. Fonseca, and O. Lyckfeldt, Influence of Particle Size Distribution on Colloidal Processing of Alumina, J. Eur. Ceram. Soc., 1998, 18(3), p 249–253

    Article  Google Scholar 

  28. A. Tsetsekou, C. Agrafiotis, and A. Milias, Optimization of the Rheological Properties of Alumina Slurries for Ceramic Processing Applications Part I: Slip-Casting, J. Eur. Ceram. Soc., 2001, 21(3), p 363–373

    Article  CAS  Google Scholar 

  29. R.G. Horn, Surface Forces and Their Action in Ceramic Materials, J. Am. Ceram. Soc., 1990, 73(5), p 1117–1135

    Article  CAS  Google Scholar 

  30. C.J. Brinker and G.W. Scherer, Sol–Gel Science, Academic press, Boston, 1990

    Google Scholar 

  31. S.J. Schneider, Engineered Materials Handbook, ASM International, Geauga, 1991

    Google Scholar 

  32. E. Carlström, Surface and Colloid Chemistry in Ceramics: An Overview, Marcel Dekker, New York, 1994

    Google Scholar 

  33. R. Moreno, The Role of Slip Additives in Tape Casting Technology 2. Binders and Plasticizers, Am. Ceram. Soc. Bull., 1992, 71(11), p 1647

    CAS  Google Scholar 

  34. L. Miettinen, P. Kekäläinen, T. Turpeinen, J. Hyväluoma, J. Merikoski, and J. Timonen, Dependence of Thermal Conductivity on Structural Parameters in Porous Samples, AIP Adv., 2012, 2(1), p 2150–2240

    Article  Google Scholar 

  35. A.G. Leach, The Thermal Conductivity of Foams. I. Models for Heat Conduction, J. Phys. D Appl. Phys., 1999, 26(5), p 733

    Article  Google Scholar 

  36. Z. Hashin and S. Shtrikman, A Variational Approach to the THEory of The Effective Magnetic Permeability of Multiphase Materials, J. Appl. Phys., 1962, 33(10), p 3125–3131

    Article  CAS  Google Scholar 

  37. R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, J. Appl. Phys., 1952, 23(7), p 779–784

    Article  CAS  Google Scholar 

  38. L. Gong, Y. Wang, X. Cheng, R. Zhang, and H. Zhang, A Novel Effective Medium Theory for Modelling the Thermal Conductivity of Porous Materials, Int. J. Heat Mass Transfer, 2014, 68(1), p 295–298

    Article  Google Scholar 

  39. H. Shenker, J.I. Lauritzen, R.J. Corruccini, and S.T. Lonberger, Reference Tables for Thermocouples, 564 (1955)

Download references

Acknowledgments

This work was supported by the State Key Lab of Advanced Metals and Materials (Grant No. 2018-Z06). AV acknowledges support from the National Science Foundation (IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hao, J., Guo, Z. et al. The Improved Thermal Conductivity of a Potting Material for High-Power Fast Warm-Up Cathodes. J. of Materi Eng and Perform 27, 6701–6708 (2018). https://doi.org/10.1007/s11665-018-3760-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3760-5

Keywords

Navigation