Skip to main content

Advertisement

Log in

Local Structure Around Nb Site of a Potential Thermoelectric Material La1/3NbO3 from Temperature-Dependent Extended x-ray Absorption Fine Structure Spectroscopy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effort to find thermoelectric materials suitable for different applications is an intense research topic of a large material science community. In this context, A-site-deficient La1/3NbO3, which shows an irreversible pressure-induced amorphization at above 15 GPa, has attracted recent attention. Here, we present a temperature-dependent Nb K-edge extended x-ray absorption fine structure (EXAFS) study of La1/3NbO3 in the range 77-500 K probing the Nb-O bond correlations. These results are compared with the Nb-O bond correlations in two related oxides NbO2 and Nb2O5. In comparison with NbO2 and Nb2O5, the Nb-O bond mean square relative displacements in La1/3NbO3 show much weaker temperature dependence revealing its enhanced spring constant. The “A” site deficiency in La1/3NbO3 may allow the oxygen atoms to preserve their local geometry and thus are less responsive to the external stimuli like temperature, which may be important in determining the thermal and electrical conductivity properties of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Zhang and L.D. Zhao, Thermoelectric Materials: Energy Conversion Between Heat and Electricity, J. Materiomics, 2015, 1, p 92–105. https://doi.org/10.1016/j.jmat.2015.01.001

    Article  Google Scholar 

  2. Y.Z. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, High Thermoelectric Figure of Merit in Heavy Hole Dominated PbTe, Energy Environ. Sci., 2011, 4, p 2085–2089. https://doi.org/10.1039/C0EE00456A

    Article  CAS  Google Scholar 

  3. T. Caillat, J.P. Fleurial, and A. Borshchevsky, Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3, J. Phys. Chem. Solids, 1997, 58, p 1119–1125. https://doi.org/10.1016/S0022-3697(96)00228-4

    Article  CAS  Google Scholar 

  4. J.Q. Li et al., Extremely Low Thermal Conductivity in Thermoelectric Ge0.55Pb0.45Te Solid Solutions via Se Substitution, Chem. Mater., 2016, 28, p 6367–6373. https://doi.org/10.1021/acs.chemmater.6b02772

    Article  CAS  Google Scholar 

  5. D.T. Morelli, V. Jovovic, and J.P. Heremans, Intrinsically Minimal Thermal Conductivity in Cubic I–V–VI2 Semiconductors, Phys. Rev. Lett., 2008, 101, p 035901. https://doi.org/10.1103/PhysRevLett.101.035901

    Article  CAS  Google Scholar 

  6. H.L. Liu et al., Copper Ion Liquid-Like Thermoelectrics, Nat. Mater., 2012, 11, p 422–425. https://doi.org/10.1038/nmat3273

    Article  CAS  Google Scholar 

  7. D. Kepaptsoglou et al., Prospects for Engineering Thermoelectric Properties in La1/3NbO3 Ceramics Revealed via Atomic-Level Characterization and Modeling, Inorg. Chem., 2018, 57, p 45–55. https://doi.org/10.1021/acs.inorgchem.7b01584

    Article  CAS  Google Scholar 

  8. S. Koh, S. Uda, M. Nishida, and X.M. Huang, Study of the Mechanism of Crystallization Electromotive Force During Growth of Congruent LiNbO3 Using a Micro-pulling-Down Method, J. Cryst. Growth, 2006, 297, p 247–258. https://doi.org/10.1016/j.jcrysgro.2006.09.041

    Article  CAS  Google Scholar 

  9. C. Marini et al., Nb K-Edge x-ray Absorption Investigation of the Pressure Induced Amorphization in A-Site Deficient Double Perovskite La1/3NbO3, J. Phys. Condens. Matter, 2016, 28, p 045401. https://doi.org/10.1088/0953-8984/28/4/045401

    Article  CAS  Google Scholar 

  10. O. Noked et al., Pressure-Induced Amorphization of La1/3NbO3, J. Noncryst. Solids, 2011, 357, p 3334. https://doi.org/10.1016/j.jnoncrysol.2011.05.030

    Article  CAS  Google Scholar 

  11. C. Marini et al., A High Pressure La K-Edge X-ray Absorption Fine Structure Spectroscopy Investigation of La1/3NbO3, High Press. Res., 2018, 38, p 12–22. https://doi.org/10.1080/08957959.2017.1397143

    Article  CAS  Google Scholar 

  12. V.S. Bhadram et al., Effect of Pressure on Octahedral Distortions in RCrO3 (R = Lu, Tb, Gd, Eu, Sm): The Role of R-Ion Size and Its Implications, Mater. Res. Express, 2014, 1, p 026111. https://doi.org/10.1088/2053-1591/1/2/026111

    Article  CAS  Google Scholar 

  13. B. Joseph et al., Experimental Evidence of an Electronic Transition in CeP Under Pressure Using Ce L3 XAS, Phys. Chem. Chem. Phys., 2017, 19, p 17526. https://doi.org/10.1039/C7CP03022C

    Article  CAS  Google Scholar 

  14. V. Rajaji et al., Structural, Vibrational, Electrical Properties of 1T–TiTe2 Under Hydrostatic Pressure: Experiments and Theory, Phys. Rev. B, 2018, 97, p 085107. https://doi.org/10.1103/PhysRevB.97.085107

    Article  Google Scholar 

  15. J. Haines et al., High-Pressure Structural Phase Transitions in Semiconducting Niobium Dioxide, Phys. Rev. B, 1999, 59, p 13650. https://doi.org/10.1103/PhysRevB.59.13650

    Article  CAS  Google Scholar 

  16. P. Wei et al., On the Relevance Between Fine Structure and Enhanced Performance of Skutterudite Thermoelectric Materials: X-Ray Spectroscopy Studies, J. Materiomics, 2016, 2, p 280–289. https://doi.org/10.1016/j.jmat.2016.06.001

    Article  Google Scholar 

  17. C. Marini et al., Structural Properties of β-Metal(II) Hydroxides: Combined XAS and Raman Spectroscopic Studies on Lattice Stability, Europhys. Lett., 2018, 28, p 045401. https://doi.org/10.1209/0295-5075/122/66002

    Article  CAS  Google Scholar 

  18. B. Joseph et al., Local Structural Displacements Across the Structural Phase Transition in IrTe2: Order-Disorder of Dimers and Role of Ir-Te Correlations, Phys. Rev. B, 2013, 88, p 224109. https://doi.org/10.1103/PhysRevB.88.224109

    Article  CAS  Google Scholar 

  19. L. Maugeri et al., Temperature Dependent Local Structure of LiCoO2 Nanoparticles Determined by Co K-Edge X-Ray Absorption Fine Structure, J. Power Sources, 2013, 229, p 272. https://doi.org/10.1016/j.jpowsour.2012.11.127

    Article  CAS  Google Scholar 

  20. M.Y. Hacisalihoglu et al., A Study of Temperature Dependent Local Atomic Displacements in a Ba(Fe1 − xCox)2As2 Superconductor, Phys. Chem. Chem. Phys., 2016, 18, p 9029–9035. https://doi.org/10.1039/C5CP07985C

    Article  CAS  Google Scholar 

  21. N.L. Saini, A. Bianconi, and H. Oyanagi, Evidence for Critical Lattice Fluctuations in the High Tc Cuprates, J. Phys. Soc. Jpn., 2001, 70, p 2092–2097. https://doi.org/10.1143/JPSJ.70.2092

    Article  CAS  Google Scholar 

  22. A.A. Ivanov et al., Local Noncentrosymmetric Structure of Bi2Sr2CaCu2O8 + y by X-ray Magnetic Circular Dichroism at Cu K-Edge XANES, J. Supercond. Novel Magn., 2018, 31, p 663–670. https://doi.org/10.1007/s10948-017-4418-5

    Article  CAS  Google Scholar 

  23. B. Joseph et al., Evidence of Local Structural Inhomogeneity in FeSe1 − xTex from Extended x-ray Absorption Fine Structure, Phys. Rev. B, 2010, 82, p 020502. https://doi.org/10.1103/PhysRevB.82.020502

    Article  CAS  Google Scholar 

  24. J.C. Mikkelsen and J.B. Boyce, Atomic-Scale Structure of Random Solid Solutions: Extended X-Ray-Absorption Fine-Structure Study of Ga1−xInxAs, Phys. Rev. Lett., 1982, 49, p 1412. https://doi.org/10.1103/PhysRevLett.49.1412

    Article  CAS  Google Scholar 

  25. B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-ray Absorption Spectroscopy Using IFEFFIT, J. Synchrotron Radiat., 2005, 12, p 537–541. https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  26. J.J. Rehr et al., Parameter-Free Calculations of X-ray Spectra with FEFF9, Phys. Chem. Chem. Phys., 2010, 12, p 5503. https://doi.org/10.1039/B926434E

    Article  CAS  Google Scholar 

  27. B.J. Kennedy, C.J. Howard, Y. Kubota, and K. Kato, Phase Transition Behaviour in the A-Site Deficient Perovskite Oxide La1/3NbO3, J. Solid State Chem., 2004, 177, p 4552–4556. https://doi.org/10.1016/j.jssc.2004.08.047

    Article  CAS  Google Scholar 

  28. A.A. Bolzan, C. Fong, B.J. Kennedy, and C.J. Howard, A Powder Neutron Diffraction Study of Semiconducting and Metallic Niobium Dioxide, J. Solid State Chem., 1994, 113, p 9–14. https://doi.org/10.1006/jssc.1994.1334

    Article  CAS  Google Scholar 

  29. A.A. Bolzan, C. Fong, B.J. Kennedy, and C.J. Howard, Structural Studies of Rutile-Type Metal Dioxides, Acta Crystallogr. Sect. B Struct. Commun., 1997, 53, p 373–380. https://doi.org/10.1107/S0108768197001468

    Article  Google Scholar 

  30. H. Schafer, R. Gruehn, and F. Schulte, The Modifications of Niobium Pentoxide, Angew. Chem. Int. Ed., 1966, 5, p 40–52. https://doi.org/10.1002/anie.196600401

    Article  Google Scholar 

  31. C. Nico, T. Monteiro, and M.P.F. Graca, Niobium Oxides and Niobates Physical Properties: Review and Prospects, Prog. Mater Sci., 2016, 80, p 1–37. https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  CAS  Google Scholar 

  32. G. Dalba and P. Fornasini, EXAFS Debye-Waller Factor and Thermal Vibrations of Crystals, J. Synchrotron Radiat., 1997, 4, p 243–255. https://doi.org/10.1107/S0909049597006900

    Article  CAS  Google Scholar 

  33. D. Bansal et al., Electron-Phonon Coupling and Thermal Transport in the Thermoelectric Compound Mo3Sb7− xTex, Phys. Rev. B, 2015, 92, p 214301. https://doi.org/10.1103/PhysRevB.92.214301

    Article  CAS  Google Scholar 

  34. B. Poudel et al., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science, 2008, 320, p 634–638. https://doi.org/10.1126/science.1156446

    Article  CAS  Google Scholar 

  35. Y. Pei et al., High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping, Adv. Funct. Mater., 2011, 21, p 241–249. https://doi.org/10.1002/adfm.201000878

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.J. acknowledges IISc Bangalore and ICTP Trieste for the IISc-ICTP fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boby Joseph.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, C., Diaz-Rovira, A.M., Kennedy, B.J. et al. Local Structure Around Nb Site of a Potential Thermoelectric Material La1/3NbO3 from Temperature-Dependent Extended x-ray Absorption Fine Structure Spectroscopy. J. of Materi Eng and Perform 27, 6322–6327 (2018). https://doi.org/10.1007/s11665-018-3749-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3749-0

Keywords

Navigation