Skip to main content
Log in

Electronic and Transport Properties of LaNi4Sb12 Skutterudite: Modified Becke–Johnson Approach

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We carried out an ab␣initio study of structural, electronic, thermodynamic, and thermoelectric properties of the lanthanum-filled skutterudite, LaNi4Sb12. Generalized gradient approximation and modified Becke–Johnson potentials were employed for the exchange–correlation potential. The electronic structure calculations display the metallic behavior of the compound. The alloy offers low lattice thermal conductivity along with a high Seebeck coefficient with a value of − 158 (μVK−1) at room temperature. The effect of high pressure and temperature on thermal properties like thermal expansion coefficient, heat capacity, and Grüneisen parameter are also investigated by means of a quasi-harmonic Debye model. The large Seebeck coefficient and high power factor exhibited by LaNi4Sb12 make it an attractive candidate for thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).

    Article  Google Scholar 

  3. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).

    Article  Google Scholar 

  4. T.M. Bhat and D.C. Gupta, RSC Adv. 6, 80302 (2016).

    Article  Google Scholar 

  5. S. Yousuf and D.C. Gupta, Mater. Sci. Eng. B 221, 73 (2017).

    Article  Google Scholar 

  6. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  7. T.M. Bhat and D.C. Gupta, J. Magn. Magn. Mater. 435, 173 (2017).

    Article  Google Scholar 

  8. S. Yousuf and D.C. Gupta, Mater. Chem. Phys. 192, 33 (2017).

    Article  Google Scholar 

  9. J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 91, 3698 (2002).

    Article  Google Scholar 

  10. X. Shi, W. Zhang, L.D. Chen, J. Yang, and C. Uher, Acta Mater. 56, 1733 (2008).

    Article  Google Scholar 

  11. D. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  Google Scholar 

  12. G.A. Slack and V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994).

    Article  Google Scholar 

  13. R. Gumeniuk, et al., Phys. Rev. Lett. 100, 017002 (2008).

    Article  Google Scholar 

  14. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  Google Scholar 

  15. D.M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (Boca Raton: CRC/Taylor & Francis, 2006).

    Google Scholar 

  16. K. Biswas, Nature 489, 414 (2012).

    Article  Google Scholar 

  17. A. Banik, U.S. Shenoy, S. Saha, U.V. Waghmare, and K. Biswas, J. Am. Chem. Soc. 138, 13068 (2016).

    Article  Google Scholar 

  18. T.M. Bhat and D.C. Gupta, J. Electron. Mater. 45, 6012 (2016).

    Article  Google Scholar 

  19. E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).

    Article  Google Scholar 

  20. J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 978 (2007).

    Article  Google Scholar 

  21. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).

    Article  Google Scholar 

  22. E.S. Toberer, A. Zevalkink, and G.J. Snyder, J. Mater. Chem. 21, 15843 (2011).

    Article  Google Scholar 

  23. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  24. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  25. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  26. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  27. M.A. Blanco, E. Francisco, and V. Luania, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  28. S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).

    Article  Google Scholar 

  29. S.A. Dar, V. Srivastava, and U.K. Sakalle, Mater. Res. Express 4, 086304 (2017).

    Article  Google Scholar 

  30. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  31. G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    Article  Google Scholar 

  32. A. Shankar, D.P. Rai, R.Khenata, Sandeepa, and R.K. Thapa, Phase Transit. 88, 1062 (2015).

    Article  Google Scholar 

  33. S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Supercond. Nov. Magn. 30, 3055 (2017).

    Article  Google Scholar 

  34. E.S. Toberer, A.F. May, C.J. Scanlon, and G.J. Snyder, J. Appl. Phys. 105, 063701 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Mohiuddin Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.M., Singh, S. & Gupta, D.C. Electronic and Transport Properties of LaNi4Sb12 Skutterudite: Modified Becke–Johnson Approach. J. Electron. Mater. 47, 4544–4549 (2018). https://doi.org/10.1007/s11664-018-6323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6323-5

Keywords

Navigation