Skip to main content
Log in

Microstructure Evolution and Microhardness Distribution of Copper Processed Using Multiple Passes of Elliptical Cross-Sectional Spiral Equal-Channel Extrusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this work is to study the effect of six-pass elliptical cross-sectional spiral equal-channel extrusion (ECSEE) on the microstructure and performance of ultrafine-grained (UFG) copper. Equiaxed grains of average grain size of less than 1 μm are formed into shear bands in the low strain region of ECSEE deformed specimen. More homogeneous and equiaxed microstructure with high misorientation angles is obtained in the high strain. Moreover, the microstructure evolution of ECSEE-induced copper is a dynamic equilibrium process of shear deformation accompanying the interactions of high dislocation density, cellular structure and high-angle grain boundaries. The grain ECSEE refinement mechanism is described as the formation process of dislocations, cells, local grain sub-boundaries rotation and large angle grain restructure. The significantly non-uniform hardness distribution is consistent with the deformation behavior and microstructure refinement in the ECSEE-induced specimen. The homogeneity of microstructure and hardness improves as the ECSEE pass increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Zhang, X. Wu, H. Haryono, and K. Xia, Natural Polymer Biocomposites Produced from Processing Raw Wood Flour by Severe Shear Deformation, Carbohydr. Polym., 2014, 113(113), p 46–52

    Article  CAS  Google Scholar 

  2. R.Z. Valiev and A.K. Mukherjee, Nanostructures and Unique Properties in Intermetallics, Subjected to Severe Plastic Deformation, Scr. Mater., 2001, 44(8–9), p 1747–1750

    Article  CAS  Google Scholar 

  3. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet, Structure and Deformaton Behaviour of Armco Iron Subjected to Severe Plastic Deformation, Acta Mater., 1996, 44(12), p 4705–4712

    Article  CAS  Google Scholar 

  4. S.E. Mousavi, M. Meratian, and A. Rezaeian, Investigation of Mechanical Properties and Fracture Surfaces of Dual-Phase 60–40 Brass Alloy Processed by Warm Equal-Channel Angular Pressing, J. Mater. Sci., 2017, 52(13), p 8041–8051

    Article  CAS  Google Scholar 

  5. J.M. Rosalie, J. Guo, R. Pippan, and Z. Zhang, On Nanostructured Molybdenum–Copper Composites Produced by High-Pressure Torsion, J. Mater. Sci., 2017, 52(16), p 9872–9883

    Article  CAS  Google Scholar 

  6. R. Łyszkowski, T. Czujko, and R.A. Varin, Multi-Axial Forging of Fe3Al-Base Intermetallic Alloy and Its Mechanical Properties, J. Mater. Sci., 2017, 52(5), p 2902–2914

    Article  CAS  Google Scholar 

  7. C.P. Wang, F.G. Li, W. Lei, and H.J. Qiao, Review on Modified and Novel Techniques of Severe Plastic Deformation, Sci. China Technol. Sci., 2012, 55(9), p 2377–2390

    Article  Google Scholar 

  8. C.P. Wang, F.G. Li, B. Chen, Z.W. Yuan, and H.Y. Lu, Severe Plastic Deformation Techniques for Bulk Ultrafine-Grained Materials, Rare Metal Mater. Eng., 2012, 41(6), p 941–946

    Article  Google Scholar 

  9. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nat. Mater., 2002, 1(1), p 45–49

    Article  CAS  Google Scholar 

  10. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation–Dislocation and Dislocation–Twin Reactions in Nanocrystalline Al by Molecular Dynamics Simulation, Acta Mater., 2003, 51(14), p 4135–4147

    Article  CAS  Google Scholar 

  11. Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskes, and S.N. Mathaudhu, Dislocation–Twin interactions in Nanocrystalline fcc Metals, Acta Mater., 2011, 59(2), p 812–821

    Article  CAS  Google Scholar 

  12. M.Y. Gutkin, I.A. Ovidkol, and N.V. Skiba, Crossover from Grain Boundary Sliding to Rotational Deformation in Nanocrystalline Materials, Acta Mater., 2003, 51(14), p 4059–4071

    Article  CAS  Google Scholar 

  13. A.A. Fedorov, M.Y. Gutkin, and I.A. Ovidko, Transformations of Grain Boundary Dislocation Pile-Ups in Nano- and Polycrystalline Materials, Acta Mater., 2003, 51(4), p 887–898

    Article  CAS  Google Scholar 

  14. C.P. Wang, F.G. Li, Q.H. Li, J. Li, L. Wang, and J.Z. Dong, A Novel Severe Plastic Deformation Method for Fabricating Ultrafine Grained Pure Copper, Mater Des., 2013, 43, p 492–498

    Article  CAS  Google Scholar 

  15. C.P. Wang, F.G. Li, Q.H. Li, and L. Wang, Numerical and Experimental Studies of Pure Copper Processed by a New Severe Plastic Deformation Method, Mater. Sci. Eng. A, 2012, 548(3), p 19–26

    CAS  Google Scholar 

  16. J.H. Li, F.G. Li, X.K. Ma, H. Chen, Z.C. Ma, and J. Li, Microhardness Distribution and Microstructural Evolution in Pure Aluminum Subjected to Severe Plastic Deformation: Elliptical Cross-Sectioned Spiral Equal-Channel Extrusion (ECSEE), J. Mater. Eng. Perform., 2015, 24(11), p 4543–4550

    Article  CAS  Google Scholar 

  17. M.I. Latypov and K.H. Seop, Comparative Analysis of Two Twist-Based SPD Processes: Elliptical Cross-Section Spiral Equal-Channel Extrusion vs Twist Extrusion, Mater. Trans., 2013, 54(9), p 1587–1591

    Article  CAS  Google Scholar 

  18. C.P. Wang, F.G. Li, H.Y. Lu, Z.W. Yuan, B. Chen, and H.J. Qiao, Deformation Analysis of Elliptical Cross-Section Spiral Equal Channel Extrusion Technique, Rare Metal Mater. Eng., 2013, 42(4), p 679–683

    Article  Google Scholar 

  19. C.P. Wang, F.G. Li, and J.C. Liu, Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process, J. Mater. Eng. Perform., 2018, 27(6), p 2967–2977

    Article  CAS  Google Scholar 

  20. J.H. Li, F.G. Li, C. Zhao, H. Chen, X.K. Ma, and J. Li, Experimental Study on Pure Copper Subjected to Different Severe Plastic Deformation Modes, Mater. Sci. Eng. A, 2016, 656, p 142–150

    Article  CAS  Google Scholar 

  21. C.P. Wang, F.G. Li, H.Y. Lu, Z.W. Yuan, and B. Chen, Optimization of Structural Parameters for Elliptical Cross-Section Spiral Equal-Channel Extrusion Dies Based on Grey Theory, Chin. J. Aeronaut., 2013, 26(1), p 209–216

    Article  Google Scholar 

  22. T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, and E.J. Lavernia, Precipitation Phenomena in an Ultrafine-Grained Al Alloy, Acta Mater., 2013, 61(6), p 2163–2178

    Article  CAS  Google Scholar 

  23. Y. Miyajima, S. Okubo, H. Abe, H. Okumura, T. Fujii, S. Onaka, and K. Masaharu, Dislocation Density of Pure Copper Processed by Accumulative Roll Bonding and Equal-Channel Angular Pressing, Mater. Charact., 2015, 104, p 101–106

    Article  CAS  Google Scholar 

  24. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189

    Article  CAS  Google Scholar 

  25. A.S. Malin and M. Hatherly, Microstructure of Cold-Rolled Copper, Mater. Sci., 1979, 13(8), p 463–472

    CAS  Google Scholar 

  26. E. Bonnot, A.L. Helbert, F. Brisset, and T. Baudin, Microstructure and Texture Evolution During the Ultra Grain Refinement of the Armco Iron Deformed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2013, 561(3), p 60–66

    Article  CAS  Google Scholar 

  27. F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, and M. Jafari, EBSD Analysis of Nano-Structured Copper Processed by ECAP, Mater. Sci. Eng. A, 2011, 528(16–17), p 5348–5355

    Article  CAS  Google Scholar 

  28. X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig, Thermal Stability of ECAP Processed Pure Copper, Mater. Sci. Eng. A, 2007, s460-461(1), p 204–213

    Article  CAS  Google Scholar 

  29. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(1), p 13–28

    Article  CAS  Google Scholar 

  30. S. Ferrasse, K.T. Hartwig, R.E. Goforth, and V.M. Segal, Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion, Metall. Mater. Trans., 1997, 28(4), p 1047–1057

    Article  Google Scholar 

  31. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49(9), p 1497–1505

    Article  CAS  Google Scholar 

  32. N. Hansen and R.F. Mehl, New Discoveries in Deformed Metals, Metall. Mater. Trans. A, 2001, 32(12), p 2917–2935

    Article  Google Scholar 

  33. N. Hansen and D.J. Jensen, Development of Microstructure in FCC Metals During Cold Work, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1999, 357(1756), p 1447–1469

    Article  CAS  Google Scholar 

  34. Y. Wang, Y. Xin, H. Yu, L. Lv, and Q. Liu, Formation and Microstructure of Shear Bands During Hot Rolling of a Mg-6Zn-0.5Zr Alloy Plate with a Basal Texture, J. Alloys Compd., 2015, 644, p 147–154

    Article  CAS  Google Scholar 

  35. V.M. Segal, Severe Plastic Deformation: Simple Shear Versus Pure Shear, Mater. Sci. Eng. A, 2002, 338(1–2), p 331–344

    Article  Google Scholar 

  36. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis, Acta Mater., 2007, 55(1), p 13–28

    Article  CAS  Google Scholar 

  37. N. Lugo, N. Llorca, J.M. Cabrera, and Z. Horita, Microstructures and Mechanical Properties of Pure Copper Deformed Severely by Equal-Channel Angular Pressing and High Pressure Torsion, Mater. Sci. Eng. A, 2008, 477(1), p 366–371

    Article  CAS  Google Scholar 

  38. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen, Microstructure and Strength of Commercial Purity Aluminium (AA 1200) Cold-Rolled to Large Strains, Acta Mater., 2002, 50(15), p 3789–3802

    Article  CAS  Google Scholar 

  39. E. Nes, T. Pettersen, and K. Marthinsen, On the Mechanisms of Work Hardening and Flow-Stress Saturation, Scr. Mater., 2000, 43(1), p 55–62

    Article  CAS  Google Scholar 

  40. M.J. Starink, X.G. Qiao, J. Zhang, and N. Gao, Predicting Grain Refinement by Cold Severe Plastic Deformation in Alloys Using Volume Averaged Dislocation Generation, Acta Mater., 2009, 57(19), p 5796–5811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 51275414 and 51172161), the School Youth Foundation (No. 1205-04020202), Tianjin Natural Science Foundation (17JCQNJC04900) and the fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengpeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Song, D., Fan, J. et al. Microstructure Evolution and Microhardness Distribution of Copper Processed Using Multiple Passes of Elliptical Cross-Sectional Spiral Equal-Channel Extrusion. J. of Materi Eng and Perform 27, 6665–6675 (2018). https://doi.org/10.1007/s11665-018-3738-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3738-3

Keywords

Navigation