Skip to main content
Log in

Thermoelectric Properties of TiNiSn Half Heusler Alloy Obtained by Rapid Solidification and Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Thermoelectric TiNiSn-based half Heusler compound reveals high Seebeck coefficient and electrical conductivity, leading to high power factor. As a consequence of the solidification path, TiNiSn single phase cannot be obtained directly from the liquid phase. Thus, a long annealing step is needed to homogenize the alloy. In this work, we present a new processing route for half Heusler compound formation, combining arc melting of pure elements, rapid solidification of the molten alloy and sintering. Rapid solidification of the molten alloy allows to obtain almost single TiNiSn phase, limiting the formation of the primary TiNi2Sn phase as a consequence of the deep undercooling of the liquid. The rapidly solidified alloy was ground to powder and sintered by open die pressing. As-sintered samples show a density around 95% of the theoretical value. Thermal cycling of the sintered samples shows evolution of the phases, suggesting that after sintering the sample is not in equilibrium yet. After the second thermal cycle thermoelectric properties become reproducible, indicating the attainment of the equilibrium. In conclusion, the proposed processing route allows to obtain dense TiNiSn in bulk form avoiding the time-consuming annealing step, typically used to homogenize this alloy after solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.J. DiSalvo, Thermoelectric Cooling and Power Generation, Science, 1999, 285, p 703–706

    Article  CAS  Google Scholar 

  2. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Perspectives on Thermoelectrics: From Fundamentals to Device Applications, Energy Environ. Sci., 2012, 5(1), p 5147–5162

    Article  Google Scholar 

  3. B. Dado, Y. Gelbstein, D. Mogilansky, V. Ezersky, and M.P. Dariel, Structural Evolution Following Spinodal Decomposition of the Pseudo-Ternary Compound (Pb0.3Sn0.1Ge0.6)Te, J. Electron. Mater., 2010, 39(9), p 2165–2171

    Article  CAS  Google Scholar 

  4. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Highly Efficient Bismuth Telluride Doped p-Type Pb0.13Ge0.87Te for Thermoelectric Applications, Phys. Status Solidi (RRL), 2007, 1(6), p 232–234

    Article  CAS  Google Scholar 

  5. G. Rogl and P. Rogl, Skutterudites, a Most Promising Group of Thermoelectric Materials, Curr. Opin. Green Sustain. Chem., 2017, 4, p 50–57

    Article  Google Scholar 

  6. D.M. Rowe, V.S. Shukla, and N. Savvides, Phonon Scattering at Grain Boundaries in Heavily Doped Fine-Grained Silicon-Germanium Alloys, Nature, 1981, 290(5809), p 765–766

    Article  CAS  Google Scholar 

  7. C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van Der Beck, and P.D. Gorsuch, Thermoelectric Properties of Pressure-Sintered Si0.8Ge0.2 Thermoelectric Alloys, J. Appl. Phys., 1991, 69(8), p 4333–4340

    Article  CAS  Google Scholar 

  8. O. Appel, T. Zilber, S. Kalabukhov, O. Beeri, and Y. Gelbstein, Morphological Effects on the Thermoelectric Properties of Ti0.3Zr0.35Hf0.35Ni1+δSn Alloys Following Phase Separation, J. Mater. Chem. C, 2015, 3(44), p 11653–11659

    Article  CAS  Google Scholar 

  9. O. Appel, M. Schwall, M. Kohne, B. Balke, and Y. Gelbstein, Microstructural Evolution Effects of Spark Plasma Sintered Ti0.3Zr0.35Hf0.35NiSn Half-Heusler Compound on the Thermoelectric Properties, J. Electron. Mater., 2013, 42(7), p 1340–1345

    Article  CAS  Google Scholar 

  10. J. Krez and B. Balke, Thermoeletric Heusler Compounds, Heusler Alloys: Properties, Growth, Applications, C. Felser and A. Hirohata, Ed., Springer, Cham, 2016, p 249–267

    Chapter  Google Scholar 

  11. K. Gofryk, D. Kaczorowski, T. Plackowski, A. Leithe-Jasper, and Y. Grin, Magnetic and Transport Properties of Rare-Earth-Based Half-Heusler Phases RPdBi: Prospective Systems for Topological Quantum Phenomena, Phys. Rev. B, 2011, 84(3), p 035208

    Article  Google Scholar 

  12. O. Pavlosiuk, X. Fabreges, A. Gukasov, M. Meven, D. Kaczorowski, and P. Wiśniewski, Magnetic Structures of REPdBi Half-Heusler Bismuthides (RE = Gd, Tb, Dy, Ho, Er), Physica B, 2018, 536, p 56–59

    Article  CAS  Google Scholar 

  13. J.-W.G. Bos and R.A. Downie, Half-Heusler Thermoelectric: A Complex Class of Materials, J. Phys. Condens. Matter, 2014, 26(43), p 433201

    Article  Google Scholar 

  14. R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T.O.L. Sunde, D. Chon, K.R. Poeppelmeier, and A. Zunger, Prediction and Accelerated Laboratory Discovery of Previously Unknown 18-Electron ABX Compounds, Nat. Chem., 2015, 7(4), p 308–316

    Article  CAS  Google Scholar 

  15. T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting, Adv. Energy Mater., 2015, 5(19), p 1500588

    Article  Google Scholar 

  16. L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, Recent Progress in Half-Heusler Thermoelectric Materials, Mater. Res. Bull., 2016, 76, p 107–112

    Article  CAS  Google Scholar 

  17. F.G. Aliev, A.I. Belogorokhov, N.B. Brandt, V.V. Kozyr’kov, R.V. Skolozdra, and Y.V. Stadnyk, Optical Properties of the Vacancy MNiSn Lattices (M = Ti, Zr, Hf), JETP Lett., 1988, 47(3), p 184–187

    Google Scholar 

  18. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Transport Properties of Pure and Doped MNiSn (M = Zr, Hf), Phys. Rev. B, 1999, 59(13), p 8615–8621

    Article  CAS  Google Scholar 

  19. C.S. Birkel, J.E. Douglas, B.R. Lettiere, G. Seward, N. Verma, Y. Zhang, T.M. Pollock, R. Seshadri, and G.D. Stucky, Influence of Ni Nanoparticle Addition and Spark Plasma Sintering on the TiNiSn-Ni System: Structure, Microstructure and Thermoelectric Properties, Solid State Sci., 2013, 26, p 16–22

    Article  CAS  Google Scholar 

  20. C.S. Birkel, J.E. Douglas, B.R. Lettiere, G. Seward, N. Verma, Y. Zhang, T.M. Pollock, R. Seshadri, and G.D. Stucky, Improving the Thermoelectric Properties of Half-Heusler TiNiSn Through Inclusion of a Second Full-Heusler Phase: Microwave Preparation and Spark Plasma Sintering of TiNi1+xSn, Phys. Chem. Chem. Phys., 2013, 15(18), p 6990–6997

    Article  CAS  Google Scholar 

  21. J.E. Douglas, C.S. Birkel, N. Verma, V.M. Miller, M.-S. Miao, G.D. Stucky, T.M. Pollock, and R. Seshadri, Phase Stability and Property Evolution of Biphasic Ti-Ni-Sn Alloys for Use in Thermoelectric Applications, J. Appl. Phys., 2014, 115(4), p 043720

    Article  Google Scholar 

  22. R.A. Downie, R.I. Smith, D.A. MacLaren, and J.-W.G. Bos, Metal Distributions, Efficient n-Type Doping, and Evidence for in-Gap States in TiNiMySn (M = Co, Ni, Cu) half-Heusler nanocomposites, Chem. Mater., 2015, 27(7), p 2449–2459

    Article  CAS  Google Scholar 

  23. Y. Tang, X. Li, L.H.J. Martin, E. Cuervo Reyes, T. Ivas, C. Leinenbach, S. Anand, M. Peters, G.J. Snyder, and C. Battaglia, Impact of Ni Content on the Thermoelectric Properties of Half-Heusler TiNiSn, Energy Environ. Sci., 2018, 11(2), p 311–320

    Article  CAS  Google Scholar 

  24. S.A. Barczak, J. Buckman, R.I. Smith, A.R. Baker, E. Don, I. Forbes, and J.-W.G. Bos, Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn, Materials, 2018, 11(4), p 536

    Article  Google Scholar 

  25. M. Schrade, K. Berland, S.N.H. Eliassen, M.N. Guzik, C. Echevarria-Bonet, M.H. Sørby, P. Jenuš, B.C. Hauback, R. Tofan, A.E. Gunnæs, C. Persson, O.M. Løvvik, and T.G. Finstad, The Role of Grain Boundary Scattering in Reducing the Thermal Conductivity of Polycrystalline XNiSn (X = Hf, Zr, Ti) Half-Heusler Alloys, Sci. Rep., 2017, 7(1), p 13760

    Article  Google Scholar 

  26. S. Bhattacharya, M.J. Skove, M. Russell, T.M. Tritt, Y. Xia, V. Ponnambalam, S.J. Poon, and N. Thadhani, Effect of Boundary Scattering on the Thermal Conductivity of TiNiSn-Based Half-Heusler Alloys, Phys. Rev. B, 2008, 77(18), p 184203

    Article  Google Scholar 

  27. B.A. Cook, J.L. Harringa, Z.S. Tan, W.A. Jesser, TiNiSn: A Gateway to the (1,1,1) Intermetallic Compounds, in 15th International Conference on Thermoelectrics, 26–29 March 1996 (IEEE, Pasadena, CA, 1996), pp. 122–127

  28. M. Zou, J.-F. Li, B. Du, D. Liu, and T. Kita, Fabrication and Thermoelectric Properties of Fine-Grained TiNiSn Compounds, J. Solid State Chem., 2009, 182(11), p 3138–3142

    Article  CAS  Google Scholar 

  29. M. Gürth, A. Grytsiv, J. Vrestal, V.V. Romaka, G. Giester, E. Bauer, and P. Rogl, On the Constitution and Thermodynamic Modelling of the System Ti-Ni-Sn, RSC Adv., 2015, 5(112), p 92270–92291

    Article  Google Scholar 

  30. M. Baricco, E. Bosco, E. Olivetti, M. Palumbo, P. Rizzi, A. Stantero, and L. Battezzati, Rapid Solidification of Alloys, Int. J. Mater. Prod. Technol., 2004, 20(5–6), p 358–376

    Article  CAS  Google Scholar 

  31. D. Lussana, A. Castellero, M. Vedani, D. Ripamonti, G. Angella, and M. Baricco, Microstructure Refinement and Hardening of Ag–20 wt% Cu Alloy by Rapid Solidification, J. Alloys Compd., 2014, 615(S1), p S633–S637

    Article  CAS  Google Scholar 

  32. D. Lussana, A. Castellero, D. Ripamonti, G. Angella, M. Vedani, A. Zambon, and M. Baricco, Effect of Rapid Quenching and Severe Plastic Deformation on Silver, Int. J. Mater. Res., 2012, 103(9), p 1117–1121

    Article  CAS  Google Scholar 

  33. C. Artini, A. Castellero, M. Baricco, M.T. Buscaglia, and R. Carlini, Structure, Microstructure and Microhardness of Rapidly Solidified Smy(FexNi1−x)4Sb12 (x = 0.45, 0.50, 0.70, 1) Thermoelectric Compounds, Solid State Sci., 2018, 79, p 71–78

    Article  CAS  Google Scholar 

  34. A. Castellero, G. Fiore, E. Evenstein, M. Baricco, and Y. Amouyal, Effects of Rapid Solidification on Phase Formation and Microstructure Evolution of AgSbTe2-Based Thermoelectric Compounds, J. Nanosci. Nanotechnol., 2017, 17(3), p 1650–1656

    Article  CAS  Google Scholar 

  35. Yu Cui, T.-J. Zhu, K. Xiao, J.-J. Shen, S.-H. Yang, and X.-B. Zhao, Reduced Grain Size and Improved Thermoelectric Properties of Melt Spun (Hf, Zr)NiSn Half-Heusler Alloys, J. Electron. Mater., 2010, 39(9), p 2008–2012

    Article  Google Scholar 

  36. S. Ceresara, C. Fanciulli, F. Passaretti, and D. Vasilevskiy, Texturing of (Bi0.2Sb0.8)2 Te3 Nanopowders by Open Die Pressing, J. Electron. Mater., 2013, 42(7), p 1529–1534

    Article  CAS  Google Scholar 

  37. http://maud.radiographema.com

  38. S. Boldrini, A. Famengo, F. Montagner, S. Battiston, S. Fiameni, M. Fabrizio, and S. Barison, Test rig for High-Temperature Thermopower and Electrical Conductivity Measurements, J. Electron. Mater., 2013, 42(7), p 1319–1323

    Article  CAS  Google Scholar 

  39. R.F. Speyer, Thermal Analysis of Materials, Marcel Dekker Inc., New York, 1994, p 79–80

    Google Scholar 

  40. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, New York, 1992, p 208–214

    Book  Google Scholar 

  41. International Center for Diffraction Data, Powder Diffraction File 03-065-0991

  42. International Center for Diffraction Data, Powder Diffraction File 00-052-0905

Download references

Acknowledgments

Alberto Castellero thanks University of Turin and Compagnia di Sanpaolo for financial support (Project No. CSTO162398). The authors also thank Dr. G. Fiore (University of Turin) and Mr E. Bassani (CNR-ICMATE, Unità di Lecco) for the support in the arc melting and ODP processing of the samples, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Castellero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aversano, F., Ferrario, A., Boldrini, S. et al. Thermoelectric Properties of TiNiSn Half Heusler Alloy Obtained by Rapid Solidification and Sintering. J. of Materi Eng and Perform 27, 6306–6313 (2018). https://doi.org/10.1007/s11665-018-3735-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3735-6

Keywords

Navigation