Skip to main content

Advertisement

Log in

On the Steel–Aluminum Hybrid Casting by Sand Casting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hybrid casting is a well-known technology to join steel inserts and aluminum. In order to achieve a high-performance material-based joining between steel and aluminum, a new PVD Al-Si-(Fe) coating, which consists of two sub-layers, has been successfully developed for high-pressure die casting. This coating system has been investigated further in this work for the sand casting process. By extending the sand casting process to the plaster casting process with preheating possibilities for the coated steel inserts, a material-based connection between steel and aluminum with a tensile shear strength of 7.7 MPa could be created. The ductility of this connection is decreased comparing with the connection manufactured by die casting. SEM and EDS analysis and diffusion experiments show that the difference of mechanical properties between plaster and die casting is caused by the extensive diffusion and the corresponding layer growth at plaster casting. The edge separation in plaster casting is a result of the edge stresses due to the different thermal expansion of steel and aluminum which can be suppressed at high-pressure die casting. To improve the joining properties at sand casting, it is necessary to control the layer diffusion by adding other alloy elements such as Mn into the Al-Si-(Fe) coating layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X.F. Fang, Evaluation of Coating Systems for Steel Aluminum Hybrid Casting, J. Mater. Sci. Eng., 2017, 7(3–4), p 51–67

    CAS  Google Scholar 

  2. Technical Reports, Magna Cosma International, 2004

  3. T. Roeth and R. Vomhof, Lightweight Component, United States Patent US7152896B2, 2006

  4. D. Jochen and M. Wibbeke, Verfahren zur Herstellung eines Hilfsrahmens (Methode for Manufacturing of a Subframe), German Patent DE102008020467A1, 2008

  5. Personal communication, BMW, 2017

  6. M. Gatzen, T. Radel, C. Thomy, and F. Vollersten, Wetting Behavior of Eutectic Al-Si Droplets on Zinc Coated Steel Substrates, J. Mater. Process. Technol., 2014, 214, p 123–131

    Article  CAS  Google Scholar 

  7. M. Salzar, A. Albiter, G. Rosas, and R. Perez, Structural and Mechanical Properties of AlFe Intermetallic Alloy with Li, Ce and Ni Additions, Mater. Sci. Eng., 2003, 351, p 154–159

    Article  Google Scholar 

  8. H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, and J. Hejazi, Micostructural Analysis of Interfacial Reaction Between Molten Aluminum and Solid Iron, J. Mater. Process. Technol., 2002, 124, p 345–352

    Article  CAS  Google Scholar 

  9. T. Shih and S. Tu, Interaction of Steel with Pure Al, Al-7Si and A356 Alloys, Mater. Sci. Eng., 2007, 454–455, p 349–356

    Article  Google Scholar 

  10. H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler, On the Formation Growth of Intermetallic Phases during Interduffsion Between Low-Carbon Steel and Aluminium Alloys, Acta Mater., 2010, 59, p 1586–1660

    Article  Google Scholar 

  11. M. Suehiro, K. Kusumi, T. Miyakoshi, J. Maki, and M. Ohgami, Nippon Steel Report No. 88, Nippon Steel, Tokyo, Japan, 2003

  12. F. Jenner, M.E. Walter, R. Iyenger, and R. Hughes, Evolution of Phases, Microstructure, and Surface Roughness During Heat Treatment of Aluminized Low Carbon Steel, Metall. Mater. Trans. A, 2010, 41, p 1554–1563

    Article  Google Scholar 

  13. ASM International, ASM Specialty HandbookAluminum and Aluminum Alloys, 2002, pp 542–575

  14. J. Gundlach and J. Detering, Anforderungsgerechte Fertigung dünnwandiger, gegossener Aluminium Prototypen und Kleinserien im Karosseriebau, Landshut, Lightweight Design, 2011, pp 48–52 (in German)

  15. Material Data Sheet of Company Aluminium Rheinfelden GmbH, Hüttenaluminium Druckgusslegierungen, 2017, p 37

  16. K. Weiß, Temperaturfeldberechnungen bei Erstarrungsvorgängen unter Berücksichtigung des Einfüllvorgangs, PhD Thesis, RWTH Aachen University, Aachen, 1996 (in German)

  17. J. Gundlach, F. Gütlbauer, C. Honsel, and K. Weiß, Durchgängige Prototypen- und Prozessentwicklung in der Gießerei mittels Finite-Elemente-Gießprozess-Simulation am Beispiel eines V6 Zylinderkurbelgehäuses, Gießerei 86 Nr. 6, 1999 (in German)

  18. C. Honsel, Die Berechnung von Wärme- und Eigenspannungen infolge von Abkühlungsprozessen mit der Methode der tangentialen Steifigkeiten, PhD Thesis, RWTH Aachen University, Aachen, 1992 (in German)

  19. T. Watkins, D. Erdman, G. Ludtka, B. Murphy, A. Sabau, S. Gorti, T. Skszek, and X. Niu, Residual Stress of Bimetallic Joints and Characterization, DOE Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting, Oak Ridge National Laboratory, 2014

  20. H. Inui, N.L. Okamoto, and K. Kishida, Ambient-Temperature Plasticity of Brittle Intermetallics at Micro-Meter Size Scales, Intermetallics conference, Bad Staffelstein, Germany, 2017

  21. N.L. Okamoto, M. Inomoto, H. Adachi, H. Takebayashi, and H. Inui, Micropillar Compression Deformation of Single Crystals of the Intermetallic Compounds ζ-FeZn13, Acta Mater., 2013, 65, p 229–239

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Azim, Mrs. Auf dem Brinke and Mr. Heßling for their technical assistance. This work was funded by the state government of Nordrhein-Westfalen, Germany, within the “Ziel 2” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfan Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Gundlach, J., Schipperges, JJ. et al. On the Steel–Aluminum Hybrid Casting by Sand Casting. J. of Materi Eng and Perform 27, 6415–6425 (2018). https://doi.org/10.1007/s11665-018-3717-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3717-8

Keywords

Navigation