Skip to main content

Advertisement

Log in

The Determination of Residual Stress in Quenched and Cold-Compressed 7050 Aluminum Alloy T-Section Forgings by the Contour Method and Neutron Diffraction

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Residual stresses were determined through the thickness of quenched and quenched followed by cold compression 7050 aluminum alloy T-section forgings using the contour method and neutron diffraction. 7050 T-section forgings are used for the manufacture of the connecting joints of wing and fuselage. Inevitably high residual stresses are introduced during the quenching process of 7050 T-section forgings, which could be reduced by cold compression to overcome the effect of residual stress on machining deformation. The longitudinal residual stresses obtained by the two techniques achieved good agreement in both trend and magnitude in both the quenched and quenched followed by cold compression 7050 T-section forgings. The stress-free lattice spacing of Al(311), the Bragg reflection used for the neutron measurements, was obtained from a 5-mm slice using the plane-stress condition, and its variation through the thickness is insignificant in both the quenched specimen and quenched followed by cold compression specimen. A comparison of the residual stresses in the quenched specimen and quenched followed by cold compression specimen showed significant changes in range of residual stresses from (− 304, 262 MPa) induced by quenching process to (− 125, 142 MPa) due to 3% cold compression. The percentage reduction in residual stress in the quenched specimen due to 3% cold compression was (46, 59%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.A. Starke Jr., and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32, p 131–172. https://doi.org/10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  2. J.C. Williams and E.A. Starke Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Article  CAS  Google Scholar 

  3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280, p 102–107. https://doi.org/10.1016/S0921-5093(99)00674-7

    Article  Google Scholar 

  4. J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, and R.C. Wimpory, The Influence of Quench Sensitivity on Residual Stresses in the Aluminium Alloys 7010 and 7075, Mater. Charact., 2012, 65, p 73–85. https://doi.org/10.1016/j.matchar.2012.01.005

    Article  CAS  Google Scholar 

  5. J.S. Robinson, D.A. Tanner, S. Van Petegem, and A. Evans, Influence of Quenching and Aging on Residual Stress in the Al-Zn-Mg-Cu Alloy 7449, Mater. Sci. Technol., 2012, 28, p 420–430. https://doi.org/10.1179/1743284711Y.0000000063

    Article  CAS  Google Scholar 

  6. S. Rasouli Yazdi, D. Retraint, and J. Lu, Study of Through-Thickness Residual Stress by Numerical and Experimental Techniques, J. Strain Anal. Eng. Des., 1998, 33, p 449–458. https://doi.org/10.1243/0309324981513147

    Article  Google Scholar 

  7. M. Koç, J. Culp, and T. Altan, Prediction of Residual Stresses in Quenched Aluminum Blocks and Their Reduction Through Cold Working Processes, J. Mater. Process. Technol., 2006, 174, p 342–354. https://doi.org/10.1016/j.jmatprotec.2006.02.007

    Article  CAS  Google Scholar 

  8. J.S. Robinson, D.A. Tanner, C.E. Truman, and R.C. Wimpory, Measurement and Prediction of Machining Induced Redistribution of Residual Stress in the Aluminium alloy 7449, Exp. Mech., 2011, 51, p 981–993. https://doi.org/10.1007/s11340-010-9389-4

    Article  Google Scholar 

  9. H. Gong, Y. Wu, and K. Liao, Prediction Model of Residual Stress Field in Aluminum Alloy Plate, J. Central South Univ. Technol., 2011, 18, p 285–289. https://doi.org/10.1007/s11771-011-0692-8

    Article  Google Scholar 

  10. N. Chobaut, J. Repper, T. Pirling, D. Carron, and J-M. Drezet, Residual stress analysis in AA7449 As-Quenched Thick Plates Using Neutrons and FE Modeling, in ICAA13: 13th International Conference on Aluminum Alloys (2012), p 285–291. https://doi.org/10.1002/9781118495292

    Google Scholar 

  11. N. Chobaut, D. Carron, S. Arsène, P. Schloth, and J.-M. Drezet, Quench Induced Residual Stress Prediction in Heat Treatable 7xxx Aluminium Alloy Thick Plates using Gleeble Interrupted Quench Tests, J. Mater. Process. Technol., 2015, 222, p 373–380. https://doi.org/10.1016/j.jmatprotec.2015.03.029

    Article  CAS  Google Scholar 

  12. D.A. Tanner and J.S. Robinson, Residual Stress Magnitudes and Related Properties in Quenched Aluminium Alloys, Mater. Sci. Technol., 2006, 22, p 77–85. https://doi.org/10.1179/174328406X79414

    Article  CAS  Google Scholar 

  13. M.B. Prime and M.R. Hill, Residual Stress Stress Relief and Inhomogeneity in Aluminium Plate, Scr. Mater., 2002, 46, p 77–82. https://doi.org/10.1016/S1359-6462(01)01201-5

    Article  CAS  Google Scholar 

  14. J.-M. Drezet, A. Evans, and T. Pirling, Residual Stresses in DC Cast Aluminum Billet-Neutron Diffraction Measurements and Thermomechanical Modeling, in The 14th International ESAFORM Conference on Material Forming AIP Conference Proceedings 1353(2011), p 1131–1136. https://doi.org/10.1063/1.3589668

  15. J.S. Robinson, S. Hossain, C.E. Truman, A.M. Paradowska, D.J. Hughes, R.C. Wimpory, and M.E. Fox, Residual Stress in 7449 Aluminium Alloy Forgings, Mater. Sci. Eng. A, 2010, 527, p 2603–2612. https://doi.org/10.1016/j.msea.2009.12.022

    Article  CAS  Google Scholar 

  16. J.S. Robinson, P.J. Tiernan, and J.F. Kelleher, Effect of Post-Quench Delay on Stress Relieving by Cold Compression for Aluminum 7050, Mater. Sci. Technol., 2015, 31, p 409–417. https://doi.org/10.1179/1743284714Y.0000000571

    Article  CAS  Google Scholar 

  17. J.S. Robinson, D.A. Tanner, and P.J. Tiernan, The Effect of Post Delay Quench Delay on Residual Stresses in Cold Compressed Aluminum Forgings, in Proceeding of 15th International Conference on Experimental Mechanics (2012), p 1–2.

  18. D.A. Tanner, J.S. Robinson, and R.L. Cudd, Cold Compression Residual Stress Reduction in Aluminium Alloy 7010, Mater. Sci. Forum, 2000, 347–349, p 235–240. https://doi.org/10.4028/www.scientific.net/MSF.347-349.235

    Article  Google Scholar 

  19. J.S. Robinson, S. Hossain, C.E. Truman, E.C. Oliver, D.J. Hughes, and M.E. Fox, Influence of Cold Compression on the Residual Stresses in 7449 Forgings, Adv. X-Ray Anal., 2009, 52, p 667–674

    CAS  Google Scholar 

  20. D.A. Tanner and J.S. Robinson, Modelling Stress Reduction Techniques of Cold Compression and Stretching in Wrought Aluminium Alloy Products, Finite Elem. Anal. Des., 2003, 39, p 369–386. https://doi.org/10.1016/S0168-874X(02)00079-3

    Article  Google Scholar 

  21. M.B. Prime, M.A. Newborn, and J.A. Balog, Quenching and Cold-Work Residual Stresses in Aluminum Hand Forgings: Contour Method Measurement and FEM Prediction, Mater. Sci. Forum, 2003, 426–432, p 435–440. https://doi.org/10.4028/www.scientific.net/MSF.426-432.435

    Article  Google Scholar 

  22. Z. Zhang, Y. Yang, L. Li, B. Chen, and H. Tian, Assessment of Residual Stress of 7050-T7452 Aluminum Alloy Forging Using the Contour Method, Mater. Sci. Eng. A, 2015, 644, p 61–68. https://doi.org/10.1016/j.msea.2015.07.018

    Article  CAS  Google Scholar 

  23. G.S. Schajer, Practical Residual Stress Measurement Methods, Wiley, New Jersey, 2013

    Book  Google Scholar 

  24. M.B. Prime, Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut, J. Eng. Mater. Technol., 2000, 123, p 162–168. https://doi.org/10.1115/1.1345526

    Article  Google Scholar 

  25. M. Klasztorny, A. Bondyra, P. Szurgott, and D. Nycz, Numerical Modelling of GFRP Laminates with MSC.Marc System and Experimental Validation, Comput. Mater. Sci., 2012, 64, p 151–156. https://doi.org/10.1016/j.commatsci.2012.05.024

    Article  CAS  Google Scholar 

  26. M.T. Hutchings, P.J. Withers, T.M. Holden, and T. Lorentzen, Introduction to the Characterization of Residual Stress by Neutron Diffraction, 1st ed., Taylor and Francis, London, 2005

    Google Scholar 

  27. R.C. Wimpory, P. Mikula, J. Ŝaroun, T. Poeste, J. Li, M. Hoffmann, and R. Schneider, Efficiency Boost of the Materials Science Diffractometer E3 at BENSC: One Order Of Magnitude Due to a Horizontally and Vertically Focusing Monochromator, Neutron News., 2008, 19, p 16–19

    Article  Google Scholar 

  28. T. Gnäupel-Herold, ISODEC: Software for Calculating Diffraction Elastic Constants, J. Appl. Crystallogr., 2012, 45, p 573–574. https://doi.org/10.1107/S0021889812014252

    Article  CAS  Google Scholar 

  29. C. Randau, U. Garbe, and H.-G. Brokmeier, StressTextureCalculator: a Software Tool to Extract Texture, Strain and Microstructure Information from Area-Detector Measurements, J. Appl. Crystallogr., 2011, 44, p 641–646. https://doi.org/10.1107/S0021889811012064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research activity was financially supported by the National Natural Science Foundation of China (Grant 11605293 and 51327902) and the State Key Laboratory of High Performance and Complex Manufacturing (Grant Kfkt2016-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wimpory, R.C., Gong, H. et al. The Determination of Residual Stress in Quenched and Cold-Compressed 7050 Aluminum Alloy T-Section Forgings by the Contour Method and Neutron Diffraction. J. of Materi Eng and Perform 27, 6049–6057 (2018). https://doi.org/10.1007/s11665-018-3676-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3676-0

Keywords

Navigation