Skip to main content
Log in

Microstructure and Mechanical Properties of Cryorolled Aluminum Alloy AA2219 in Different Thermomechanical Processing Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, aluminum alloy AA2219-T87 bars were cryorolled to various amounts of deformation in two pre-deformation conditions: (1) without solution treatment i.e., as-received T87 (WST-CR) and (2) with solution treatment (ST + CR). The solution treated and cryorolled bars were further annealed leading to a third condition: (3) solution treated, cryorolled, and annealed (CR + Annealed). Room-temperature mechanical properties have been evaluated for all three cryorolled conditions. Significant improvement in the 0.2 pct YS and UTS values was obtained for bars cryorolled to cross-sectional area reduction of more than 50 pct in the solution-treated condition (ST + CR), whereas for bars cryorolled in the without solution-treated condition (WST-CR), only an improvement in the 0.2 pct YS was observed. Cryorolling did not enhance the precipitation kinetics nor did it increase the response of the alloy to aging. The mechanical properties were correlated to the microstructures obtained by optical and transmission electron microscopy. Microstructural evolution in the ST + CR condition indicated gradual progression of the principal restoration mechanism from dynamic recovery (DRV) to dynamic recrystallization with an increasing amount of plastic deformation. Transmission electron microscopy of WST-CR and ST + CR specimens showed an increase in dislocation density as a function of the amount of deformation indicating suppression of DRV at cryogenic temperatures. Cryorolling in the solution-treated condition to cross-sectional area reduction of more than 50 pct (ST + 70 pct CR) was found to impart an optimum combination of strength and percent elongation in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Zhang, B. Chen, and B. Zhang: Mater. Des., 2012, vol. 34, pp. 15-21.

    Article  Google Scholar 

  2. S.G. Pantelakis and N.D. Alexopoulos: Mater. Des., 2008, vol. 29, pp. 80-91.

    Article  Google Scholar 

  3. A.K. Jha, S.V.S.N. Murty, V. Divakar, and K. Sreekumar: Eng. Fail. Anal., 2003, vol. 10, pp. 265-73.

    Article  Google Scholar 

  4. S.V.S.N. Murty, K. Sushant, P. Manwatkar, and R. Narayanan: Metallogra. Microstruct. Anal., 2015, vol. 4, pp. 392-402.

    Article  Google Scholar 

  5. K.S. Arora, S. Pandey, M. Schaper, and R. Kumar: J. Mater. Sci. Technol., 2010, vol. 26, no. 8, pp. 747-53.

    Article  Google Scholar 

  6. P. SrinavasaRao, K.G. Sivadasan, and P.K. Balasubramanian: Bull. Mater. Sci., 1996, vol. 19, pp. 549-57.

    Article  Google Scholar 

  7. S. Kou: Weld. Metall., 2nd ed., Wiley, New York, 2003, pp. 303–05.

  8. R.K. Gupta and S.V.S.N. Murty: Eng. Fail. Anal., 2006, vol. 13, pp. 1370-5.

    Article  Google Scholar 

  9. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev: Mater. Sci. Eng. A, 2013, vol. 560, pp.1-24.

    Article  Google Scholar 

  10. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 6187-204.

    Article  Google Scholar 

  11. G.E. Totten and D.S. MacKenzie, Eds.: Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing, Marcel Dekker Inc., New York, 2003, pp. 213–14.

  12. B. Beausir, J. Scharnweber, J. Jaschinski, H.G. Brokmeier, C.G. Oertel, and W. Skrotzki: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3271-8.

    Article  Google Scholar 

  13. R. Kaibyshev, I. Mazurina, and O. Sitdikov: Mater. Sci. Forum, 2004, vols. 467-70, pp. 1199-204.

    Article  Google Scholar 

  14. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, and R. Kaibyshev: Mater. Sci. Eng. A, 2008, vol. 473, pp. 297-305.

    Article  Google Scholar 

  15. R. Kaibyshev and I. Mazurina: Mater. Sci. Forum, 2004, vols. 467-70, pp. 1251-60.

    Article  Google Scholar 

  16. I. Gutierrez-Urrutia, M.A. Munoz-Morris, and D.G. Morris: Mater. Sci. Eng. A, 2005, vol. 394, pp. 399-410.

    Article  Google Scholar 

  17. S. Sabbaghianrad, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7789-95.

    Article  Google Scholar 

  18. M. Das, G. Das, M. Ghosh, M. Wegner, V. Rajnikant, S.G. Chowdhury, and T.K. Pal: Mater. Sci. Eng. A, 2012, vol. 558, pp. 525-32.

    Article  Google Scholar 

  19. P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, O.A. Ruano, and F. Carreño: Mater. Sci. Eng. A, 2012, vol. 556, pp. 287-94.

    Article  Google Scholar 

  20. Ductile-to-brittle transition, Teaching & Learning Packages, Dissemination of IT for the Promotion of Materials Science (DoITPoMS), University of Cambridge, UK.

  21. P. NageswaraRao, D. Singh, and R. Jayaganthan: J. Mater. Sci. Technol., 2014, vol. 30, no. 10, pp. 998-1005.

    Article  Google Scholar 

  22. S.K. Panigrahi and R. Jayaganthan: Mater. Sci. Eng. A, 2008, vol. 480, pp. 299-305.

    Article  Google Scholar 

  23. S.K. Panigrahi and R. Jayaganthan: Mater. Des., 2011, vol. 32, pp. 2172-80.

    Article  Google Scholar 

  24. S.K. Panigrahi and R. Jayaganthan: Mater. Des., 2011, vol. 32, pp. 3150-60.

    Article  Google Scholar 

  25. D. Cristina, C. Magalhães, M. Ferreira, H. Osvaldo, and M. Cintho: Mater. Sci. Eng. A, 2014, vol. 593, pp. 1-7.

    Article  Google Scholar 

  26. T. Shanmugasundaram, B.S. Murty, and V.S. Sarma: Scripta Mater., 2006, vol. 54, pp. 2013-7.

    Article  Google Scholar 

  27. W. Huang, Z. Liu, L. Xia, P. Xia, and S. Zeng: Mater. Sci. Eng. A, 2012, vol. 556, pp. 801-6.

    Article  Google Scholar 

  28. W. Huang, Z. Liu, M. Lin, X. Zhou, L. Zhao, A. Ning, and S. Zeng: Mater. Sci. Eng. A, 2012, vol. 546, pp. 26-33.

    Article  Google Scholar 

  29. M.R. Shankar, S. Chandrasekar, A.H. King, and W.D. Compton: Acta Mater., 2005, vol. 53, pp. 4781-93.

    Article  Google Scholar 

  30. S. Dadbakhsh, A.K. Taheri, and C.W. Smith: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4758-66.

    Article  Google Scholar 

  31. M. Vončina, A. Smolej, J. Medved, P. Mrvar, and R. Barbič: RMZ – Mater. Geoenviron., 2010, vol. 57, no. 3, pp. 295-304.

    Google Scholar 

  32. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal: Mater. Sci. Eng. A, 2005, vol. 398, pp. 246-51.

    Article  Google Scholar 

  33. A.Dhal, S.K. Panigrahi, and M.S. Shunmugam: Mater. Sci. Eng. A, 2015, vol. 645, pp. 383-92.

    Article  Google Scholar 

  34. M. Weiss, A.S. Taylor, P.D. Hodgson, and N. Stanford: Acta Mater., 2013, vol. 61, pp. 5278-89.

    Article  Google Scholar 

  35. K.C. Sekhar, R. Narayanasamy, and K. Velmanirajan: Mater. Des., 2014, vol. 53, pp. 1064-70.

    Article  Google Scholar 

  36. K.S.V.B.R. Krishna, K.C. Sekhar, R. Tejas, N.N. Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu: Mater. Des., 2015, vol. 67, pp. 107–17.

  37. R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Leuser, and T.G. Nieh: Scripta Mater., 2001, 44, pp. 2411-7.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Director of the VSSC for his permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Additional information

Manuscript submitted June 18, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Saravanan, K., Nayan, N. et al. Microstructure and Mechanical Properties of Cryorolled Aluminum Alloy AA2219 in Different Thermomechanical Processing Conditions. Metall Mater Trans A 48, 321–341 (2017). https://doi.org/10.1007/s11661-016-3807-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3807-x

Keywords

Navigation