Skip to main content
Log in

Influence of Dynamic Three Point Bending on the Work Hardening Capacity of T105Mn120 Manganese Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper analyzes work hardening behavior of T105Mn120 Hadfield steel under dynamic conditions. The specimens were investigated under two states: (a) untreated (as cast) and (b) solution treated to 1100 °C. Dynamic flexural behavior was examined by means of three-point-bending tests performed with a dynamic mechanical analyser (DMA), and structural analysis was done by x-ray diffraction, optical and scanning electron microscopy; DMA tests were performed under two variants: (a) temperature scans, between − 150 and 400 °C and (b) isothermal strain sweeps, up to 0.15% strain amplitudes. The former emphasized the critical temperatures of thermally induced reversible martensitic transformation and antiferromagnetic–paramagnetic phase transition, while the latter enabled to monitor the storage modulus increase due to the work hardening caused by dynamic bending. Strain sweeps tests revealed the effects of both dynamic bending frequency and number of cycles. The largest work hardening effect, obtained after five strain sweep cycles applied at the frequency of 5 Hz, was associated with the finest distribution of precipitated carbides, observed by differential scanning calorimetry and the formation of slip micro-bands, illustrated on OM micrographs and SEM energy dispersion spectroscopy maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.A. Hadfield, Sound Steel for Rails and Structural Purposes, J. Frankl. Inst. CLXXIX, 1915, 2, p 119–140

    Article  Google Scholar 

  2. D. Hadfield, Magnetic Materials in the Third Millennium, Mater. Des., 1989, 10(5), p 222–230

    Article  CAS  Google Scholar 

  3. H. Berns and W. Teisen, Ferrous Materials, Steel and Cast Iron, Springer, Berlin, 2008, p 43

    Google Scholar 

  4. W. Zhang, J. Wu, Y. Wen, J. Ye, and N. Li, Characterization of Different Work Hardening Behavior in AISI, 321 Stainless Steel and Hadfield Steel, J. Mater. Sci., 2010, 45, p 3433–3437

    Article  CAS  Google Scholar 

  5. L. Niu, M. Hojamberdiev, Y. Xu, and H. Wu, Microstructure and Mechanical Properties of Hadfield Steel Matrix Composite Reinforced with Oriented High-Chromium Cast Iron Bars, J. Mater. Sci., 2010, 45, p 4532–4538

    Article  CAS  Google Scholar 

  6. D. Dunne, Shape Memory in Ferrous Alloys, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Vol 2, E. Pereloma and D.V. Edmonds, Ed., Woodhead Publishing, Cambridge, 2012, p 83–125

    Google Scholar 

  7. B.D. Shanina, A.I. Tyshchenko, I.N. Glavatskyy, V.V. Runov, Y.N. Petrov, H. Berns, and V.G. Gavriljuk, Chemical Nano-scale Homogeneity of Austenitic CrMnCN Steels in Relation to Electronic and Magnetic Properties, J. Mater. Sci., 2011, 46, p 7725–7736

    Article  CAS  Google Scholar 

  8. R. Ueji, D. Kondo, Y. Takagi, T. Mizuguchi, Y. Tanaka, and K. Shinagawa, Grain Size Effect on High-Speed Deformation of Hadfield Steel, J. Mater. Sci., 2012, 47, p 7946–7953

    Article  CAS  Google Scholar 

  9. D.V. Lychagin, A.V. Filippov, O.S. Novitskaia, Y.I. Chumlyakov, E.A. Kolubaev, and O.V. Sizova, Friction-Induced Slip Band Relief of-Hadfield Steel Single Crystal Oriented for Multiple Slip Deformation, Wear, 2017, 374–375, p 5–14

    Article  Google Scholar 

  10. R. Harzallah, A. Mouftiez, E. Felder, S. Hariri, and J.-P. Maujean, Rolling Contact Fatigue of Hadfield Steel X120Mn12, Wear, 2010, 269, p 647–654

    Article  CAS  Google Scholar 

  11. X.Y. Feng, F.C. Zhang, Z.N. Yang, and M. Zhang, Wear Behavior of Nanocrystallised Hadfield Steel, Wear, 2013, 305, p 299–304

    Article  CAS  Google Scholar 

  12. C. Chen, X.Y. Feng, B. Lvb, Z.N. Yang, and F.C. Zhang, A Study on Aging Carbide Precipitation Behavior of Hadfield Steel by Dynamic Elastic Modulus, Mater. Sci. Eng. A, 2016, 677, p 446–452

    Article  CAS  Google Scholar 

  13. B. Pricop, E. Mihalache, M.-N. Lohan, B. Istrate, M. Mocanu, B. Ozkal, and L.-G. Bujoreanu, Powder Metallurgy and Mechanical Alloying Effects on the Formation of Thermally Induced Martensite in an FeMnSiCrNi SMA, ESOMAT 2015, MATEC Web Conf., 2015, 33, p 04004. https://doi.org/10.1051/matecconf/20153304004

    Article  CAS  Google Scholar 

  14. E. Mihalache, B. Pricop, M.-G. Suru, N.M. Lohan, R.I. Comăneci, B. Istrate, B. Özkal, and L.-G. Bujoreanu, Factors Influencing Martensite Transitions in Fe-Based Shape Memory Alloys, ESOMAT 2015, MATEC Web Conf., 2015, 33, p 04002. https://doi.org/10.1051/matecconf/20153304002

    Article  CAS  Google Scholar 

  15. T. Sawaguchi, L.-G. Bujoreanu, T. Kikuchi, K. Ogawa, and F. Yin, Effects of Nb and C in Solution and in NbC Form on the Transformation-Related Internal Friction of Fe-17Mn (mass%) Alloys, ISIJ Int., 2008, 48(1), p 99–106

    Article  CAS  Google Scholar 

  16. M. Suru, N. Lohan, E. Mihalache, B. Pricop, M. Mocanu, and L. Bujoreanu, AFM Evaluation of Pre-Straining Degree Effects on the Dimensions of Stress Induced Martensite Plates in Fe-Mn-Si Based SMAs, J. Test. Eval., 2017, 45(2), p 419–427

    Article  Google Scholar 

  17. L.G. Bujoreanu, N.M. Lohan, B. Pricop, and N. Cimpoeşu, Thermal Memory Degradation in a Cu-Zn-Al Shape Memory Alloy During Thermal Cycling with Free Air Cooling, J. Mater. Eng. Perform., 2011, 20(3), p 468–475

    Article  CAS  Google Scholar 

  18. E. Alarcon, L. Heller, S.A. Chirani, P. Šittner, J. Kopeček, L. Saint-Sulpice, and S. Calloch, Fatigue Performance of Superelastic NiTi Near Stress-Induced Martensitic Transformation, Int. J. Fatigue, 2017, 95, p 76–89

    Article  CAS  Google Scholar 

  19. X. Wu and H.Y. Hsu, Effect of the Neel Temperature, TN, on Martensitic Transformation in Fe-Mn-Si-Based Shape Memory Alloys, Mater. Char., 2000, 45, p 137–142

    Article  CAS  Google Scholar 

  20. B. Pricop, U. Söyler, B. Özkal, N.M. Lohan, A.L. Paraschiv, M.G. Suru, and L.G. Bujoreanu, Influence of Mechanical Alloying on the Behavior of Fe-Mn-Si-Cr-Ni Shape Memory Alloys Made by Powder Metallurgy, Mater. Sci. Forum, 2013, 738–739, p 237–241

    Article  Google Scholar 

  21. L.-G. Bujoreanu, On the Influence of Austenitization on the Morphology of α-Phase in Tempered Cu–Zn–Al Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 481–482, p 395–403

    Article  Google Scholar 

  22. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock, Quantitative Measurement of Deformation-Induced Martensite in 304 Stainless Steel by X-ray Diffraction, Scr. Mater., 2004, 50, p 1445–1449

    Article  CAS  Google Scholar 

  23. M. Eskandari, A. Zarei-Hazanki, M.A. Mohtadi-Bonab, A.G. Odeshi, and J.A. Szpunar, Microstructure and Texture Evolution in 21Mn–2.5Si–1.6Al–Ti Steel Subjected to Dynamic Impact Loading, Mater. Sci. Eng. A, 2015, 622, p 160–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by UEFISCDI through Project Codes PN-II-PT-PCCA-2011-3.1-0174, Contract Nos. 144/ 2.07.2012 and PN-III-P4-ID-PCE-2012-0468, Contract No. 76/ 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pricop.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1104 kb)

Supplementary material 2 (DOCX 804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulbuc, V., Pricop, B., Maxim, F. et al. Influence of Dynamic Three Point Bending on the Work Hardening Capacity of T105Mn120 Manganese Steel. J. of Materi Eng and Perform 27, 6127–6134 (2018). https://doi.org/10.1007/s11665-018-3658-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3658-2

Keywords

Navigation