Skip to main content

Advertisement

Log in

Effect of Initial Microstructure on Properties of Cryorolled Al 5052 Alloy Subjected to Different Annealing Treatment Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Al 5052 alloy sheets were subjected to different pre-annealing temperatures (150, 200, 250, 300, and 350 °C) prior to cryorolling. The process resulted in Al 5052 alloys with different initial microstructures. The pre-annealed alloy sheets were compared with a cryorolled sample not subjected to pre-annealing. The thicknesses of the alloy samples after cryorolling was reduced by 30%. The pre-annealed cryorolled samples exhibited low crystallite size, and high lattice strain. Among them, the cryorolled sample pre-annealed at 300 °C had the lowest crystallite size, and the highest lattice strain. Changes in initial microstructure of this sample resulted in a significant improvement in its hardness (88 Hv), tensile strength (333 MPa), and corrosion resistance. The sample had the highest corrosion resistance among the cryorolled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.H. Liu and H.C. Lin, Equal Channel Angular Extrusion of AA 6063 Using Conventional Direct Extrusion Press, J. Mater. Eng. Perform., 2015, 24(11), p 4569–4577

    Article  CAS  Google Scholar 

  2. J. Lu, X. Wu, Z. Liu, D. Guo, Y. Lou, and S. Ruan, Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing, J. Mater. Eng. Perform., 2017, 26(10), p 5107–5117

    Article  CAS  Google Scholar 

  3. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981

    Article  CAS  Google Scholar 

  4. N. Kamikawa and T. Furuhara, Accumulative Channel-Die Compression Bonding (ACCB): A New Severe Plastic Deformation Process to Produce Bulk Nanostructured Metals, J. Mater. Process. Technol., 2013, 213, p 1412–1418

    Article  CAS  Google Scholar 

  5. A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53, p 893–979

    Article  CAS  Google Scholar 

  6. S.K. Panigrahi and R. Jayaganthan, Effect of Rolling Temperature on Microstructure and Mechanical Properties of 6063 Al Alloy, Mater. Sci. Eng. A, 2008, 492, p 300–305

    Article  Google Scholar 

  7. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915

    Article  CAS  Google Scholar 

  8. D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, H.T. Zhang, X.M. Liu, B.N. Wei, and X.Y. Zhang, High Strength and Ductility in Multimodal-Structured Zr, Mater. Des., 2012, 34, p 275–278

    Article  CAS  Google Scholar 

  9. F. Feyissa, D.R. Kumar, and P.N. Rao, Characterization of Microstructure, Mechanical Properties and Formability of cryorolled AA5083 Alloy Sheets, J. Mater. Eng. Perform., 2018, 27(4), p 1614–1626

    Article  CAS  Google Scholar 

  10. S.K. Panigrahi, R. Jayaganthan, and V. Pancholi, Effect of Plastic Deformation Conditions on Microstructural Characteristics and Mechanical Properties of Al 6063 Alloy, Mater. Des., 2009, 30, p 1894–1901

    Article  CAS  Google Scholar 

  11. Y.B. Lee, D.H. Shin, K.T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of A 5083 Al Alloy Deformed at Cryogenic Temperature, Scr. Mater., 2004, 51, p 355–359

    Article  CAS  Google Scholar 

  12. K. Krishna, K.C. Sekhar, R. Tejas, N.N. Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Effect of Cryorolling on The Mechanical Properties of AA5083 Alloy and the Portevin–Le Chatelier Phenomenon, Mater. Des., 2015, 67, p 107–117

    Article  CAS  Google Scholar 

  13. K.C. Sekhar, R. Narayanasamy, and K. Velmanirajan, Experimental Investigations on Microstructure and Formability of Cryorolled AA 5052 Sheets, Mater. Des., 2014, 53, p 1064–1070

    Article  Google Scholar 

  14. U.G. Gang, S.H. Lee, and W.J. Nam, The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Mater. Trans., 2009, 50, p 82–86

    Article  CAS  Google Scholar 

  15. P.N. Rao, A. Kaurwar, D. Singh, and R. Jayaganthan, Enhancement in Strength and Ductility of Al-Mg-Si Alloy by Cryorolling Followed by Warm Rolling, Procedia Eng., 2014, 75, p 123–128

    Article  CAS  Google Scholar 

  16. R.J. Immanuel and S.K. Panigrahi, Influence of Cryorolling on Microstructure and Mechanical Properties of a Cast Hypoeutectic Al–Si Alloy, Mater. Sci. Eng. A, 2015, 640, p 424–435

    Article  CAS  Google Scholar 

  17. Q.W. Jiang and X.W. Li, Effect of Pre-annealing Treatment on the Compressive Deformation and Damage Behavior of Ultrafine-Grained Copper, Mater. Sci. Eng. A, 2012, 546, p 59–67

    Article  CAS  Google Scholar 

  18. D. Singh, P. Nageswara Rao, and R. Jayaganthan, High Cyclic Fatigue Behaviour of Ultrafine Grained Al 5083 Alloy, Mater. Sci. Technol., 2014, 30, p 1835–1842

    Article  CAS  Google Scholar 

  19. U.G. Kang, J.C. Lee, S.W. Jeong, and W.J. Nam, The Improvement of Strength and Ductility in Ultra-Fine Grained 5052 Al Alloy by Cryogenic- and Warm-Rolling, J. Mater. Sci., 2010, 45, p 4739–4744

    Article  CAS  Google Scholar 

  20. D. Singh, P. Nageswara Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769

    Article  CAS  Google Scholar 

  21. D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, and H. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615

    Article  CAS  Google Scholar 

  22. S.K. Panigrahi, D. Devanand, and R. Jayaganthan, Effect of Ageing on Strength and Ductility of Ultrafine Grained Al 6061 Alloy, Mater. Sci. Forum, 2010, 633–634, p 303–309

    Google Scholar 

  23. P. Bhaskar, A. Dasgupta, V.S. Sarma, U.K. Mudali, and S. Saroja, Mechanical Properties and Corrosion Behaviour of Nanocrystalline Ti-5Ta-1.8Nb Alloy Produced by Cryo-Rolling, Mater. Sci. Eng. A, 2014, 616, p 71–77

    Article  CAS  Google Scholar 

  24. N.N. Krishna, K. Sivaprasad, and P. Susila, Strengthening Contributions in Ultra-High Strength Cryorolled Al-4%Cu-3%TiB2 In Situ Composite, Trans. Nonferrous Met. Soc. China, 2014, 24, p 641–647

    Article  CAS  Google Scholar 

  25. M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12–20

    Article  CAS  Google Scholar 

  26. P.N. Rao and R. Jayaganthan, Effects of Warm Rolling and Ageing After Cryogenic Rolling on Mechanical Properties and Microstructure of Al 6061 Alloy, Mater. Des., 2012, 39, p 226–233

    Article  Google Scholar 

  27. P.N. Rao, B. Viswanadh, and R. Jayaganthan, Effect of Cryorolling and Warm Rolling on Precipitation Evolution in Al 6061 Alloy, Mater. Sci. Eng. A, 2014, 606, p 1–10

    Article  CAS  Google Scholar 

  28. M. Mirzaei, M.R. Roshan, and S.A. Jenabali, Jahromi, Microstructure and Mechanical Properties Relation in Cold Rolled Al 2024 Alloy Determined by X-ray Line Profile Analysis, Mater. Sci. Eng. A, 2015, 620, p 44–49

    Article  Google Scholar 

  29. B. Gopi, N. Naga Krishna, K. Sivaprasad, and K. Venkateswarlu, Effect of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si Alloy Reinforced with 3wt.% TiB2 In Situ Composite, Adv. Mater. Res., 2012, 584, p 556–560

    Article  CAS  Google Scholar 

  30. C. Hammond, The Basics of Crystallography and Diffraction, 3rd ed., Oxford University Press Inc., New York, 2009

    Google Scholar 

  31. N. Naga Krishna, R. Tejas, K. Sivaprasad, and K. Venkateswarlu, Study on Cryorolled Al-Cu Alloy Using X-ray Diffraction Line Profile Analysis and Evaluation of Strengthening Mechanisms, Mater. Des., 2013, 52, p 785–790

    Article  CAS  Google Scholar 

  32. N. Naga Krishna, M. Ashfaq, P. Susila, K. Sivaprasad, and K. Venkateswarlu, Mechanical Anisotropy and Microstructural Changes During Cryorolling of Al–Mg–Si Alloy, Mater. Charact., 2015, 107, p 302–308

    Article  CAS  Google Scholar 

  33. H.J. Chen, S.W. Lee, J.S. Park, and D.H. Bae, Positive Deviation from a Hall–Petch Relation in Nanocrystalline Aluminum, Mater. Trans., 2009, 50, p 640–643

    Article  Google Scholar 

  34. S. Thangaraju, M. Heilmaier, B.S. Murty, and S.S. Vadlamani, On the Estimation of True Hall–Petch Constants and Their Role on the Superposition Law Exponent in Al Alloys, Adv. Eng. Mater., 2012, 14, p 892–897

    Article  CAS  Google Scholar 

  35. R.W. Armstrong, Hall–Petch Description of Nano-crystalline Cu, Ni and Al Strength Levels and Strain Rate Sensitivities, Philos. Mag., 2016, 96, p 3097–3108

    Article  CAS  Google Scholar 

  36. H.J. Choi, S.W. Lee, J.S. Park, and D.H. Bae, Positive Deviation from a Hall–Petch Relation in Nanocrystalline Aluminum, Mater. Trans., 2009, 50, p 640–643

    Article  CAS  Google Scholar 

  37. A. Dhal, S.K. Panigrahi, and M.S. Shunmugam, Influence of Annealing on Stain Hardening Behaviour and Fracture Properties of a Cryorolled Al 2014 alloy, Mater. Sci. Eng. A, 2015, 645, p 383–392

    Article  CAS  Google Scholar 

  38. B. Gopi, N. Naga Krishna, K. Sivaprasad, and K. Venkateswarlu, Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si Alloy, World Acad. Sci. Eng. Technol., 2012, 6, p 604–608

    Google Scholar 

  39. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal, Effect of Cryo-Rolling and Annealing on Microstructure and Properties of Commercially Pure Aluminium, Mater. Sci. Eng. A, 2005, 398, p 246–251

    Article  Google Scholar 

  40. N.N. Krishna, B. Gopi, K. Sivaprasad, and V. Muthupandi, Studies on Potentiodynamic Polarization Behaviour of Cryorolled Al-Mg-Si Alloy, Key Eng. Mater., 2013, 545, p 153–157

    Article  Google Scholar 

  41. K. Gopala Krishna, K. Sivaprasad, T.S.N.S. Narayanan, and K.C. Hari Kumar, Localized Corrosion of an Ultrafine Grained Al-4Zn-2Mg Alloy Produced by Cryorolling, Corros. Sci., 2012, 60, p 82–89

    Article  CAS  Google Scholar 

  42. K. Sivaprasad, V. Swarnalatha, V.V. Ravikumar, and V. Muthupandi, Influence of Short Annealing Treatment on Corrosion Behaviour of Cryorolled Commercially Pure Aluminum, Anti Corros. Methods Mater., 2010, 57, p 18–20

    Article  CAS  Google Scholar 

  43. Ł. Dolega, B. Adamczyk-Cieslak, J. Mizera, and K.J. Kurzydłowski, Corrosion Resistance of Model Ultrafine-Grained Al–Li Alloys Produced by Severe Plastic Deformation, J. Mater. Sci., 2012, 47, p 3026–3033

    Article  CAS  Google Scholar 

  44. X.Y. Zhang, M.H. Shi, C. Li, N.F. Liu, and Y.M. Wei, The Influence of Grain Size on the Corrosion Resistance of Nanocrystalline Zirconium Metal, Mater. Sci. Eng. A, 2007, 448, p 259–263

    Article  Google Scholar 

  45. S. Gollapudi, Grain Size Distribution Effects on the Corrosion Behaviour of Materials, Corros. Sci., 2012, 62, p 90–94

    Article  CAS  Google Scholar 

  46. L.Y. Qin, J.S. Lian, and Q. Jiang, Effect of Grain Size on Corrosion Behavior of Electrodeposited Bulk Nanocrystalline Ni, Trans. Nonferrous Met. Soc. China, 2010, 20, p 82–89

    Article  CAS  Google Scholar 

  47. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao et al., Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51, p 225–229

    Article  CAS  Google Scholar 

  48. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured Aluminium Alloys Produced by Severe Plastic Deformation: New Horizons in Development, Mater. Sci. Eng. A, 2013, 560, p 1–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Universiti Sains Malaysia for funding this study under the RU Grant (1001/PBahan/814197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Anasyida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anas, N.M., Dhindaw, B.K., Zuhailawati, H. et al. Effect of Initial Microstructure on Properties of Cryorolled Al 5052 Alloy Subjected to Different Annealing Treatment Temperatures. J. of Materi Eng and Perform 27, 6206–6217 (2018). https://doi.org/10.1007/s11665-018-3645-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3645-7

Keywords

Navigation