Skip to main content

Advertisement

Log in

Experimental Determination of Power Losses and Heat Generation in Solar Cells for Photovoltaic-Thermal Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Solar cell thermal recovery has recently attracted more and more attention as a viable solution to increase photovoltaic efficiency. However, the convenience of the implementation of such a strategy is bound to the precise evaluation of the recoverable thermal power and to a proper definition of the losses occurring within the solar device. In this work, we establish a framework in which all solar cell losses are defined and described. The aim is to determine the components of the thermal fraction. We therefore describe an experimental method to precisely compute these components from the measurement of the external quantum efficiency, the current–voltage characteristics, and the reflectivity of the solar cell. Applying this method to three different types of devices (bulk, thin film, and multi-junction), we could exploit the relationships among losses for the main three generations of PV cells available nowadays. In addition, since the model is explicitly wavelength dependent, we could show how thermal losses in all cells occur over the whole solar spectrum, and not only in the infrared region. This demonstrates that profitable thermal harvesting technologies should enable heat recovery over the whole solar spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IEA-PVS. Snapshot of Global Photovoltaic Markets—Report IEA PVPS T1 29:2016 (2015)

  2. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, and W.C. Sinke, Photovoltaic Materials: Present Efficiencies and Future Challenges, Science, 2016, 352, p aad4424

    Article  Google Scholar 

  3. K. Yazawa and A. Shakouri, Cost-Efficiency Trade-off and the Design of Thermoelectric Power Generators, Environ. Sci. Technol., 2011, 45, p 7548–7553

    Article  CAS  Google Scholar 

  4. V.V. Tyagi, S.C. Kaushik, and S.K. Tyagi, Advancement in Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Technology, Renew. Sustain. Energy Rev., 2012, 16, p 1383–1398. https://doi.org/10.1016/j.rser.2011.12.013

    Article  Google Scholar 

  5. N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, A Novel High-Performance Photovoltaic–Thermoelectric Hybrid Device, Energy Environ. Sci., 2011, 4, p 3676. https://doi.org/10.1039/c1ee01646f

    Article  CAS  Google Scholar 

  6. K.-T. Park, S.-M. Shin, A.S. Tazebay, H.-D. Um, J.-Y. Jung, S.-W. Jee et al., Lossless Hybridization Between Photovoltaic and Thermoelectric Devices, Sci. Rep., 2013, 3, p 422–427

    Google Scholar 

  7. T.-J. Hsueh, J.-M. Shieh, and Y.-M. Yeh, Hybrid Cd-Free CIGS Solar Cell/TEG Device with ZnO Nanowires, Prog. Photovoltaics Res. Appl., 2015, 23, p 507–512

    Article  CAS  Google Scholar 

  8. B. Lorenzi, M. Acciarri, and D. Narducci, Conditions for Beneficial Coupling of Thermoelectric and Photovoltaic Devices, J. Mater. Res., 2015, 30, p 2663–2669. https://doi.org/10.1557/jmr.2015.174

    Article  CAS  Google Scholar 

  9. D. Narducci and B. Lorenzi, Challenges and Perspectives in Tandem Thermoelectric-Photovoltaic Solar Energy Conversion, IEEE Trans. Nanotechnol., 2016, https://doi.org/10.1109/tnano.2016.2524680

    Article  Google Scholar 

  10. T.T. Chow, A Review on Photovoltaic/Thermal Hybrid Solar Technology, Appl. Energy, 2010, 87, p 422–427

    Google Scholar 

  11. A.G. Aberle, W. Zhang, and B. Hoex, Advanced loss Analysis Method for Silicon Wafer Solar Cells, Energy Procedia, 2011, 8, p 244–249. https://doi.org/10.1016/j.egypro.2011.06.131

    Article  CAS  Google Scholar 

  12. J. Greulich and S. Rein, Numerical Power Balance and Free Energy Loss Analysis for Solar Cells Including Optical, Thermodynamic, and Electrical Aspects, J. Appl. Phys., 2013, 114, p 204504. https://doi.org/10.1063/1.4832777

    Article  CAS  Google Scholar 

  13. J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A.G. Aberle, A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells, IEEE J. Photovolt., 2015, 5, p 619–626

    Article  Google Scholar 

  14. S. Wasmer, A. Van Der Horst, P. Saint-cast, and J. Greulich, Modeling-Free Efficiency Gain Analysis of Passivated Emitter and Rear Silicon Solar Cells, IEEE J. Photovolt., 2018, 8, p 689–696

    Google Scholar 

  15. O. Dupré, R. Vaillon, and M.A. Green, Physics of the Temperature Coefficients of Solar Cells, Sol. Energy Mater. Sol. Cells, 2015, 140, p 92–100. https://doi.org/10.1016/j.solmat.2015.03.025

    Article  CAS  Google Scholar 

  16. O. Dupré, R. Vaillon, and M.A. Green, A Full Thermal Model for Photovoltaic Devices, Sol. Energy, 2016, 140, p 73–82. https://doi.org/10.1016/j.solener.2016.10.033

    Article  CAS  Google Scholar 

  17. M.A. Steiner, J.F. Geisz, J. Scott Ward, I. Garcia, D.J. Friedman, R.R. King et al., Optically Enhanced Photon Recycling in Mechanically Stacked Multijunction Solar Cells, IEEE J. Photovolt., 2016, 6, p 358–365. https://doi.org/10.1109/JPHOTOV.2015.2494690

    Article  Google Scholar 

  18. X. Sheng, M.H. Yun, C. Zhang, A.M. Al-Okaily, M. Masouraki, L. Shen et al., Device Architectures for Enhanced Photon Recycling in Thin-Film Multijunction Solar Cells, Adv. Energy Mater., 2015, 5, p 1400919. https://doi.org/10.1002/aenm.201400919

    Article  CAS  Google Scholar 

  19. D.M. Tex, M. Imaizumi, H. Akiyama, and Y. Kanemitsu, Internal Luminescence Efficiencies in InGaP/GaAs/Ge Triple-Junction Solar Cells Evaluated from Photoluminescence Through Optical Coupling Between Subcells, Sci. Rep., 2016, 6, p 38297. https://doi.org/10.1038/srep38297

    Article  CAS  Google Scholar 

  20. C.J. Hibberd, F. Plyta, C. Monokroussos, M. Bliss, T.R. Betts, and R. Gottschalg, Voltage-Dependent Quantum Efficiency Measurements of Amorphous Silicon Multi-Junction Mini-Modules, Sol. Energy Mater. Sol. Cells, 2011, 95, p 123–126. https://doi.org/10.1016/J.SOLMAT.2010.03.039

    Article  CAS  Google Scholar 

  21. R.R. King, C. Fetzer, P. Chiu, E. Rehder, K. Edmondson, and N. Karam, Group-IV Subcells in Multijunction Concentrator Solar Cells, ECS Trans., 2012, 50, p 287–295. https://doi.org/10.1149/05009.0287ecst

    Article  CAS  Google Scholar 

  22. M. Acciarri, S. Binetti, A. Le Donne, B. Lorenzi, L. Caccamo, L. Miglio et al., Development of a Hybrid Sputtering/Evaporation Process for Cu(In, Ga)Se2 thin film solar cells, Cryst. Res. Technol., 2011, 46, p 871–876. https://doi.org/10.1002/crat.201000670

    Article  CAS  Google Scholar 

  23. S. Marchionna, P. Garattini, A. Le Donne, M. Acciarri, S. Tombolato, and S. Binetti, Cu2ZnSnS4 Solar Cells Grown by Sulphurisation of Sputtered Metal Precursors, Thin Solid Films, 2013, 542, p 114–118. https://doi.org/10.1016/j.tsf.2013.06.084

    Article  CAS  Google Scholar 

  24. S. Yaşar, S. Kahraman, S. Çetinkaya, Ş. Apaydın, İ. Bilican, and İ. Uluer, Numerical Thickness Optimization Study of CIGS Based Solar Cells with wxAMPS, Opt. Int. J. Light Electron. Opt., 2016, 127, p 8827–8835. https://doi.org/10.1016/J.IJLEO.2016.06.094

    Article  Google Scholar 

  25. M.J. Taghavi, M. Houshmand, M.H. Zandi, and N.E. Gorji, Modeling of Optical Losses in Perovskite Solar Cells, Superlattices Microstruct., 2016, 97, p 424–428. https://doi.org/10.1016/j.spmi.2016.06.031

    Article  CAS  Google Scholar 

  26. L.C. Hirst and N.J. Ekins-Daukes, Fundamental Losses in Solar Cells, Prog. Photovolt. Res. Appl., 2011, 19, p 286–293. https://doi.org/10.1002/pip.1024

    Article  Google Scholar 

  27. W. Shockley and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 1961, 32, p 422–427. https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  28. Y. Vorobiev, J. González-Hernández, P. Vorobiev, and L. Bulat, Thermal-Photovoltaic Solar Hybrid System for Efficient Solar Energy Conversion, Sol. Energy, 2006, 80, p 170–176

    Article  Google Scholar 

  29. D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, and M. Chiesa, Photovoltaic-Thermoelectric Hybrid Systems: A General Optimization Methodology, Appl. Phys. Lett., 2008, https://doi.org/10.1063/1.2947591

    Article  Google Scholar 

  30. M. Mizoshiri, M. Mikami, K. Ozaki, and K. Kobayashi, Thin-Film Thermoelectric Modules for Power Generation Using Focused Solar Light, J. Electron. Mater., 2012, 41, p 1713–1719

    Article  CAS  Google Scholar 

  31. G. Friesen, D. Pavanello, A. Virtuani, Overview of Temperature Coefficients of Different Thin Film Photovoltaic Technologies. 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, 6–10 Sept 2010, Val Spain 2010:422–7. https://doi.org/10.4229/25theupvsec2010-4av.3.83

  32. C.H. Henry, Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells, J. Appl. Phys., 1980, 51, p 4494. https://doi.org/10.1063/1.328272

    Article  CAS  Google Scholar 

  33. P.F. Baldasaro, J.E. Raynolds, G.W. Charache, D.M. DePoy, C.T. Ballinger, T. Donovan et al., Thermodynamic Analysis of Thermophotovoltaic Efficiency and Power Density Tradeoffs, J. Appl. Phys., 2001, 89, p 3319–3327. https://doi.org/10.1063/1.1344580

    Article  CAS  Google Scholar 

  34. T. Markvart, Thermodynamics of Losses in Photovoltaic Conversion, Appl. Phys. Lett., 2007, 91, p 064102. https://doi.org/10.1063/1.2766857

    Article  CAS  Google Scholar 

  35. P.T. Landsberg and V. Badescu, Carnot factor in Solar Cell Efficiencies, J. Phys. D Appl. Phys., 2000, 33, p 3004–3008. https://doi.org/10.1088/0022-3727/33/22/320

    Article  CAS  Google Scholar 

  36. D.T. Cotfas, P.A. Cotfas, D. Ursutiu, C. Samoila, The Methods to Determine the Series Resistance and the Ideality Factor of Diode for Solar Cells-Review. 2012 13th International Conference on Optimization of Electrical and Electronic Equipment, IEEE; 2012, p. 966–72. https://doi.org/10.1109/optim.2012.6231814

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant No. 745304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lorenzi.

Additional information

This article is an invited paper selected from presentations at “GiTE 2018” (Thermoelectricity Days), held February 21-22, 2018, in Santa Margherita Ligure, Italy, and has been expanded from the original presentation.

Appendix A: Computation of \(\varvec{L}_{4}\) Components

Appendix A: Computation of \(\varvec{L}_{4}\) Components

In this section, we show how to split the \(L_{4}\) components. As mentioned in section 2, \(L_{4}\) losses are voltage drops associated with \(L_{3}\) losses. Actually, current losses \(L_{3}\) impact the generation–recombination balance, reducing the voltage that the device can generate and are the reason why solar cells exhibit voltages smaller than \(E_{\text{g}} /q\). The sum of these voltage losses actually accounts for the difference between \(E_{\text{g}} /q\) and voltage at maximum power \(V_{\text{mp}}\).

Previous studies (Ref 15, 26, 32,33,34) showed how the sum of two of such losses corresponds to the radiative recombination \(L_{{3{\text{rad}}}}\). The first is called Carnot loss (\(L_{{4{\text{carnot}}}}\)) with a corresponding voltage drop firstly derived by Landsberg and Badescu (Ref 35):

$$\Delta V_{{4{\text{carnot}}}} \approx \frac{{E_{\text{g}} }}{q}\frac{{T_{\text{c}} }}{{T_{\text{s}} }}$$
(25)

with \(T_{\text{c}}\) the cell temperature and \(T_{\text{s}}\) the temperature of the Sun. This loss takes into account only radiative emission in the solid angle within which the device absorbs the solar spectrum. The second is instead the so-called Boltzmann voltage loss (\(L_{{4{\text{boltz}}}}\)) which takes into account the difference between the solid angle within which the solar cell absorbs the solar power, and the solid angle within which it emits. The voltage drop associated can be calculated as

$$\Delta V_{{4{\text{boltz}}}} \approx \frac{{k_{\text{B}} T_{\text{c}} }}{q}{ \ln }\left( {\frac{{\varOmega_{\text{emit}} }}{{\varOmega_{\text{abs}} }}} \right)$$
(26)

where \(k_{\text{B}}\) is the Boltzmann constant and \(\varOmega_{\text{emit}}\) and \(\varOmega_{\text{abs}}\), respectively, the emission and absorption solid angles.

We then define with \(L_{{4{\text{Nrad}} - {\text{V}}}}\), and \(L_{{4{\text{s}}}}\) the voltage drops corresponding to non-radiative recombination and to electrical shunts.

The total voltage drop due to \(L_{4}\) (hereafter \(\Delta V_{4}\)) is therefore equal to

$$\Delta V_{4} = \frac{{E_{\text{g}} }}{q} - V_{\text{mp}} = \Delta V_{{4{\text{carnot}}}} + \Delta V_{{4{\text{boltz}}}} + \Delta V_{{4{\text{Nrad}} - {\text{V}}}} + \Delta V_{{4{\text{s}}}}$$
(27)

While \(V_{\text{mp}}\) is known from the solar cell current–voltage characteristic, and the Carnot and Boltzmann contributions are known from Eq 25 and 26, one can obtain the sum of the two unknown voltage drops as

$$\Delta V_{{4{\text{Nrad}} - {\text{V}}}} + \Delta V_{{4{\text{s}}}} = \frac{{E_{\text{g}} }}{q} - V_{\text{mp}} - \Delta V_{{4{\text{carnot}}}} - \Delta V_{{4{\text{boltz}}}}$$
(28)

Finally, knowing from Eq 18, the total \(L_{4}\), and from Eq 25, 26, and 28, the ratio between the different components, one can sort out the loss components \(L_{{4{\text{carnot}}}}\), \(L_{{4{\text{boltz}}}}\), and (\(L_{{4{\text{Nrad}} - {\text{V}}}} + L_{{4{\text{s}}}}\)).

It is worth to point out that \({{\Delta }}V_{{4{\text{s}}}}\) can also be extracted by the determination of the solar cell series resistance as

$$\Delta V_{{4{\text{s}}}} = R_{\text{s}} I_{\text{mp}}$$
(29)

where \(R_{\text{s}}\) is the series resistance which can be obtained from the solar cell IV characteristic by several methods (Ref 36) and \(I_{\text{mp}}\) is the solar cell current at maximum power.

Note that the method does not allow to obtain the spectral dependency of the \(L_{4}\) components.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzi, B., Acciarri, M. & Narducci, D. Experimental Determination of Power Losses and Heat Generation in Solar Cells for Photovoltaic-Thermal Applications. J. of Materi Eng and Perform 27, 6291–6298 (2018). https://doi.org/10.1007/s11665-018-3604-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3604-3

Keywords

Navigation