Skip to main content

Advertisement

Log in

Influence of Rust Permeability on Corrosion of E690 Steel in Industrial and Non-industrial Marine Splash Zones

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behaviour of E690 steel in industrial and non-industrial marine splash environments was studied by environmental testing, morphology analysis, electrochemical measurements, and scanning Kelvin probe microscopy. Chloride and sulphide anions were found to diffuse across the rust layer following the evaporation of seawater splashed on the steel’s surface. The cation-selective permeability of the rust layer resulted in an anion concentration gradient across the rust layer, which was more significant in the presence of sulphur dioxide. In addition, sulphur dioxide enhanced the formation of α-FeOOH, which led to the formation of distinct anode and cathode areas at the rust/steel interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Jeffrey and R.E. Melchers, Corrosion of Vertical Mild Steel Strips in Seawater, Corr. Sci., 2009, 51(10), p 2291–2297

    Article  Google Scholar 

  2. Z. Xiang-rong, H. Gui-qiao, and L. Cai-feng, Study on the Corrosion Peak of Carbon Steel in Marine Splash Zone, Chin. J. Oceanol. Limn., 1997, 15(4), p 378–380

    Article  Google Scholar 

  3. H. Humble, Cathodic Protection of Steel Piling in Sea Water, Corrosion, 1949, 5(9), p 292–302

    Article  Google Scholar 

  4. K. Zen, Corrosion and Life Cycle Management of Port Structures, Corr. Sci., 2005, 47(10), p 2353–2360

    Article  Google Scholar 

  5. Q. Zhang, J. Wu, J. Wang, W. Zheng, J. Chen, and A. Li, Corrosion Behavior of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2003, 77(2), p 603–608

    Article  Google Scholar 

  6. J. Castaño, C. Botero, A. Restrepo, E. Agudelo, E. Correa, and F. Echeverría, Atmospheric Corrosion of Carbon Steel in Colombia, Corr. Sci., 2010, 52(1), p 216–223

    Article  Google Scholar 

  7. R. Jeffrey and R.E. Melchers, The Changing Topography of Corroding Mild Steel Surfaces in Seawater, Corr. Sci., 2007, 49(5), p 2270–2288

    Article  Google Scholar 

  8. C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, and W. Ke, Atmospheric Corrosion Monitoring of a Weathering Steel Under an Electrolyte Film in Cyclic Wet–Dry Condition, Corr. Sci., 2014, 78, p 130–137

    Article  Google Scholar 

  9. R.E. Melchers and R. Jeffrey, Corrosion of Long Vertical Steel Strips in the Marine Tidal Zone and Implications for ALWC, Corr. Sci., 2012, 65, p 26–36

    Article  Google Scholar 

  10. M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric Corrosion data of weathering steels. A review, Corr. Sci., 2013, 77, p 6–24

    Article  Google Scholar 

  11. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corr. Sci., 2015, 100, p 627–641

    Article  Google Scholar 

  12. C. Wenjuan, H. Long, D. Junhua, K. Wei, and W. Huailiang, Effect of pH Value on the Corrosion Evolution of Q235B Steel in Simulated Coastal-Industrial Atmospheres, Acta Metall. Sin., 2015, 51(2), p 191–200

    Google Scholar 

  13. J. Calero, J. Alcántara, B. Chico, I. Díaz, J. Simancas, D. de la Fuente, and M. Morcillo, Wet/dry Accelerated Laboratory Test to Simulate the Formation of Multilayered Rust on Carbon Steel in Marine Atmospheres, Corros. Eng. Sci. Techn, 2017, 52(3), p 178–187

    Article  Google Scholar 

  14. H. Tanaka, N. Hatanaka, M. Muguruma, T. Ishikawa, and T. Nakayama, Influence of Anions on the Formation of Artificial Steel Rust Particles Prepared from Acidic Aqueous Fe(III) Solution, Corr. Sci., 2013, 66, p 136–141

    Article  Google Scholar 

  15. B.S. Phull, S.J. Pikul, and R.M. Kain, Seawater Corrosivity Around the World: Results From Five Years of Testing, Second Volumeed, ASTM International, Corrosion Testing in Natural Waters, 1997

    Google Scholar 

  16. R.E. Melchers, M. Ahammed, R. Jeffrey, and G. Simundic, Statistical Characterization of Surfaces of Corroded Steel Plates, Mar. Struct., 2010, 23(3), p 274–287

    Article  Google Scholar 

  17. J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, and R. Ojeda, Modelling of Pitting Corrosion in Marine and Offshore Steel Structures–A Technical Review, J. Loss. Prevent. Proc., 2015, 37, p 39–62

    Article  Google Scholar 

  18. H.-H. Wang and M. Du, Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone, Acta Metall. Sin., 2017, 30(6), p 1–9

    Google Scholar 

  19. A. Ul-Hamid, H. Saricimen, A. Quddus, A.I. Mohammed, and L.M. Al-Hems, Corrosion Study of SS304 and SS316 Alloys in Atmospheric, Underground and Seawater Splash Zone In the Arabian Gulf, Corros. Eng. Sci. Techn, 2017, 52(2), p 134–140

    Article  Google Scholar 

  20. J. Liu, Z. Li, Y. Li, and B. Hou, Corrosion Process of D32 Steel Used for Offshore oil Platform in Splash Zone, Anti-Corros. Method. M., 2016, 63(1), p 56–64

    Article  Google Scholar 

  21. H. Tamura, The Role of Rusts in Corrosion and Corrosion Protection of Iron and Steel, Corr. Sci., 2008, 50(7), p 1872–1883

    Article  Google Scholar 

  22. M. Morcillo, B. Chico, D. de la Fuente, J. Alcántara, I.O. Wallinder, and C. Leygraf, On the Mechanism of Rust Exfoliation in Marine Environments, J. Electrochem. Soc., 2017, 164(2), p C8–C16

    Article  Google Scholar 

  23. D. Singh, S. Yadav, and J.K. Saha, Role of Climatic Conditions on Corrosion Characteristics of Structural Steels, Corr. Sci., 2008, 50(1), p 93–110

    Article  Google Scholar 

  24. L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corr. Sci., 2014, 85, p 401–410

    Article  Google Scholar 

  25. D. Zhang, H. Qian, L. Wang, and X. Li, Comparison of Barrier Properties for a Superhydrophobic Epoxy Coating Under Different Simulated Corrosion Environments, Corr. Sci., 2016, 103, p 230–241

    Article  Google Scholar 

  26. D. De La Fuente, B. Chico, and M. Morcillo, A SEM/XPS/SKP Study on the Distribution of Chlorides in Contaminated Rusty Steel, Corr. Sci., 2006, 48(8), p 2304–2316

    Article  Google Scholar 

  27. Q. Zhang, J. Wang, J. Wu, W. Zheng, J. Chen, and A. Li, Effect of Ion Selective Property on Protective Ability Of Rust Layer Formed on weathering steel exposed in the Marine Atmosphere, Acta Metall. Sin., 2001, 37(2), p 193–196

    Google Scholar 

  28. K. Ramana, S. Kaliappan, N. Ramanathan, and V. Kavitha, Characterization of Rust Phases Formed on Low Carbon Steel Exposed to Natural Marine Environment of Chennai Harbour–South India, Mater. Corros., 2007, 58(11), p 873–880

    Article  Google Scholar 

  29. W. Chen, L. Hao, J. Dong, and W. Ke, Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere, Corr. Sci., 2014, 83, p 155–163

    Article  Google Scholar 

  30. L. Hao, S. Zhang, J. Dong, and W. Ke, Evolution of Corrosion of MnCuP Weathering Steel Submitted to Wet/Dry Cyclic Tests in a Simulated Coastal Atmosphere, Corr. Sci., 2012, 58, p 175–180

    Article  Google Scholar 

  31. A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet–Dry Conditions—Influence of Time of Wetness, Corr. Sci., 2004, 46(1), p 169–181

    Article  Google Scholar 

  32. P. Dillmann, F. Mazaudier, and S. Hœrlé, Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion, Corr. Sci., 2004, 46(6), p 1401–1429

    Article  Google Scholar 

  33. T. Nishimura and T. Kodama, Clarification of Chemical State for Alloying Elements in Iron Rust Using a Binary-Phase Potential–pH Diagram and Physical Analyses, Corr. Sci., 2003, 45(5), p 1073–1084

    Article  Google Scholar 

  34. X. Zhao, Y. Cheng, W. Fan, C. Vladimir, V. Volha, and T. Alla, Inhibitive Performance of a Rust Converter on Corrosion of Mild Steel, J. Mater. Eng. Perform., 2014, 23(11), p 4102–4108

    Article  Google Scholar 

  35. C. Sun, J. Sun, Y. Wang, X. Lin, X. Li, X. Cheng, and H. Liu, Synergistic Effect of O2, H2S and SO2 Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 System, Corr. Sci., 2016, 107, p 193–203

    Article  Google Scholar 

  36. H. Meng, X. Hu, and A. Neville, A Systematic Erosion–Corrosion Study of Two Stainless Steels in Marine Conditions via Experimental Design, Wear, 2007, 263(1), p 355–362

    Article  Google Scholar 

  37. R.I. Ray, J.S. Lee, B.J. Little, and T. Gerke, The Anatomy of Tubercles: A Corrosion Study in a Fresh Water Estuary, Meter. Corros., 2010, 61(12), p 993–999

    Article  Google Scholar 

  38. P. Pohjanne, L. Carpén, T. Hakkarainen, and P. Kinnunen, A Method to Predict Pitting Corrosion of Stainless Steels in Evaporative Conditions, J. Constr. Steel Res., 2008, 64(11), p 1325–1331

    Article  Google Scholar 

  39. J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, and R. Ojeda, Modelling of Pitting Corrosion in Marine and Offshore Steel Structures—A Technical Review, J. Loss. Prevent. Proc. Ind., 2015, 37, p 39–62

    Article  Google Scholar 

  40. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corr. Sci., 2006, 48(9), p 2799–2812

    Article  Google Scholar 

  41. J. Wang, F. Wei, Y. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47(1), p 1–8

    Article  Google Scholar 

  42. C. Wen, Y. Tian, G. Wang, J. Hu, and P. Deng, The Influence of Nickel on Corrosion Behavior of Low Alloy Steel in a Cyclic Wet-Dry Condition, Int. J. Electrochem. Sc., 2016, 11(5), p 4161–4173

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2014CB643300], the National Key Research and Development Program of China (Grant Nos. 2016YFB0300604, 2016YFB0700502), the Fundamental Research Funds for the Central Universities (No. FRF-BR-17-028A).

Conflict of Interest

All the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Pang, K., Liu, Z. et al. Influence of Rust Permeability on Corrosion of E690 Steel in Industrial and Non-industrial Marine Splash Zones. J. of Materi Eng and Perform 27, 3742–3749 (2018). https://doi.org/10.1007/s11665-018-3406-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3406-7

Keywords

Navigation