Advertisement

Influence of Rust Permeability on Corrosion of E690 Steel in Industrial and Non-industrial Marine Splash Zones

  • Mindong Chen
  • Kun Pang
  • Zhiyong Liu
  • Junsheng Wu
  • Xiaogang Li
Article
  • 77 Downloads

Abstract

The corrosion behaviour of E690 steel in industrial and non-industrial marine splash environments was studied by environmental testing, morphology analysis, electrochemical measurements, and scanning Kelvin probe microscopy. Chloride and sulphide anions were found to diffuse across the rust layer following the evaporation of seawater splashed on the steel’s surface. The cation-selective permeability of the rust layer resulted in an anion concentration gradient across the rust layer, which was more significant in the presence of sulphur dioxide. In addition, sulphur dioxide enhanced the formation of α-FeOOH, which led to the formation of distinct anode and cathode areas at the rust/steel interface.

Keywords

electrochemistry industrial environment low alloy steel marine splash zone rust layer analysis 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2014CB643300], the National Key Research and Development Program of China (Grant Nos. 2016YFB0300604, 2016YFB0700502), the Fundamental Research Funds for the Central Universities (No. FRF-BR-17-028A).

Conflict of Interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    R. Jeffrey and R.E. Melchers, Corrosion of Vertical Mild Steel Strips in Seawater, Corr. Sci., 2009, 51(10), p 2291–2297CrossRefGoogle Scholar
  2. 2.
    Z. Xiang-rong, H. Gui-qiao, and L. Cai-feng, Study on the Corrosion Peak of Carbon Steel in Marine Splash Zone, Chin. J. Oceanol. Limn., 1997, 15(4), p 378–380CrossRefGoogle Scholar
  3. 3.
    H. Humble, Cathodic Protection of Steel Piling in Sea Water, Corrosion, 1949, 5(9), p 292–302CrossRefGoogle Scholar
  4. 4.
    K. Zen, Corrosion and Life Cycle Management of Port Structures, Corr. Sci., 2005, 47(10), p 2353–2360CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, J. Wu, J. Wang, W. Zheng, J. Chen, and A. Li, Corrosion Behavior of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2003, 77(2), p 603–608CrossRefGoogle Scholar
  6. 6.
    J. Castaño, C. Botero, A. Restrepo, E. Agudelo, E. Correa, and F. Echeverría, Atmospheric Corrosion of Carbon Steel in Colombia, Corr. Sci., 2010, 52(1), p 216–223CrossRefGoogle Scholar
  7. 7.
    R. Jeffrey and R.E. Melchers, The Changing Topography of Corroding Mild Steel Surfaces in Seawater, Corr. Sci., 2007, 49(5), p 2270–2288CrossRefGoogle Scholar
  8. 8.
    C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, and W. Ke, Atmospheric Corrosion Monitoring of a Weathering Steel Under an Electrolyte Film in Cyclic Wet–Dry Condition, Corr. Sci., 2014, 78, p 130–137CrossRefGoogle Scholar
  9. 9.
    R.E. Melchers and R. Jeffrey, Corrosion of Long Vertical Steel Strips in the Marine Tidal Zone and Implications for ALWC, Corr. Sci., 2012, 65, p 26–36CrossRefGoogle Scholar
  10. 10.
    M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric Corrosion data of weathering steels. A review, Corr. Sci., 2013, 77, p 6–24CrossRefGoogle Scholar
  11. 11.
    H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corr. Sci., 2015, 100, p 627–641CrossRefGoogle Scholar
  12. 12.
    C. Wenjuan, H. Long, D. Junhua, K. Wei, and W. Huailiang, Effect of pH Value on the Corrosion Evolution of Q235B Steel in Simulated Coastal-Industrial Atmospheres, Acta Metall. Sin., 2015, 51(2), p 191–200Google Scholar
  13. 13.
    J. Calero, J. Alcántara, B. Chico, I. Díaz, J. Simancas, D. de la Fuente, and M. Morcillo, Wet/dry Accelerated Laboratory Test to Simulate the Formation of Multilayered Rust on Carbon Steel in Marine Atmospheres, Corros. Eng. Sci. Techn, 2017, 52(3), p 178–187CrossRefGoogle Scholar
  14. 14.
    H. Tanaka, N. Hatanaka, M. Muguruma, T. Ishikawa, and T. Nakayama, Influence of Anions on the Formation of Artificial Steel Rust Particles Prepared from Acidic Aqueous Fe(III) Solution, Corr. Sci., 2013, 66, p 136–141CrossRefGoogle Scholar
  15. 15.
    B.S. Phull, S.J. Pikul, and R.M. Kain, Seawater Corrosivity Around the World: Results From Five Years of Testing, Second Volumeed, ASTM International, Corrosion Testing in Natural Waters, 1997Google Scholar
  16. 16.
    R.E. Melchers, M. Ahammed, R. Jeffrey, and G. Simundic, Statistical Characterization of Surfaces of Corroded Steel Plates, Mar. Struct., 2010, 23(3), p 274–287CrossRefGoogle Scholar
  17. 17.
    J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, and R. Ojeda, Modelling of Pitting Corrosion in Marine and Offshore Steel Structures–A Technical Review, J. Loss. Prevent. Proc., 2015, 37, p 39–62CrossRefGoogle Scholar
  18. 18.
    H.-H. Wang and M. Du, Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone, Acta Metall. Sin., 2017, 30(6), p 1–9Google Scholar
  19. 19.
    A. Ul-Hamid, H. Saricimen, A. Quddus, A.I. Mohammed, and L.M. Al-Hems, Corrosion Study of SS304 and SS316 Alloys in Atmospheric, Underground and Seawater Splash Zone In the Arabian Gulf, Corros. Eng. Sci. Techn, 2017, 52(2), p 134–140CrossRefGoogle Scholar
  20. 20.
    J. Liu, Z. Li, Y. Li, and B. Hou, Corrosion Process of D32 Steel Used for Offshore oil Platform in Splash Zone, Anti-Corros. Method. M., 2016, 63(1), p 56–64CrossRefGoogle Scholar
  21. 21.
    H. Tamura, The Role of Rusts in Corrosion and Corrosion Protection of Iron and Steel, Corr. Sci., 2008, 50(7), p 1872–1883CrossRefGoogle Scholar
  22. 22.
    M. Morcillo, B. Chico, D. de la Fuente, J. Alcántara, I.O. Wallinder, and C. Leygraf, On the Mechanism of Rust Exfoliation in Marine Environments, J. Electrochem. Soc., 2017, 164(2), p C8–C16CrossRefGoogle Scholar
  23. 23.
    D. Singh, S. Yadav, and J.K. Saha, Role of Climatic Conditions on Corrosion Characteristics of Structural Steels, Corr. Sci., 2008, 50(1), p 93–110CrossRefGoogle Scholar
  24. 24.
    L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corr. Sci., 2014, 85, p 401–410CrossRefGoogle Scholar
  25. 25.
    D. Zhang, H. Qian, L. Wang, and X. Li, Comparison of Barrier Properties for a Superhydrophobic Epoxy Coating Under Different Simulated Corrosion Environments, Corr. Sci., 2016, 103, p 230–241CrossRefGoogle Scholar
  26. 26.
    D. De La Fuente, B. Chico, and M. Morcillo, A SEM/XPS/SKP Study on the Distribution of Chlorides in Contaminated Rusty Steel, Corr. Sci., 2006, 48(8), p 2304–2316CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, J. Wang, J. Wu, W. Zheng, J. Chen, and A. Li, Effect of Ion Selective Property on Protective Ability Of Rust Layer Formed on weathering steel exposed in the Marine Atmosphere, Acta Metall. Sin., 2001, 37(2), p 193–196Google Scholar
  28. 28.
    K. Ramana, S. Kaliappan, N. Ramanathan, and V. Kavitha, Characterization of Rust Phases Formed on Low Carbon Steel Exposed to Natural Marine Environment of Chennai Harbour–South India, Mater. Corros., 2007, 58(11), p 873–880CrossRefGoogle Scholar
  29. 29.
    W. Chen, L. Hao, J. Dong, and W. Ke, Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere, Corr. Sci., 2014, 83, p 155–163CrossRefGoogle Scholar
  30. 30.
    L. Hao, S. Zhang, J. Dong, and W. Ke, Evolution of Corrosion of MnCuP Weathering Steel Submitted to Wet/Dry Cyclic Tests in a Simulated Coastal Atmosphere, Corr. Sci., 2012, 58, p 175–180CrossRefGoogle Scholar
  31. 31.
    A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet–Dry Conditions—Influence of Time of Wetness, Corr. Sci., 2004, 46(1), p 169–181CrossRefGoogle Scholar
  32. 32.
    P. Dillmann, F. Mazaudier, and S. Hœrlé, Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion, Corr. Sci., 2004, 46(6), p 1401–1429CrossRefGoogle Scholar
  33. 33.
    T. Nishimura and T. Kodama, Clarification of Chemical State for Alloying Elements in Iron Rust Using a Binary-Phase Potential–pH Diagram and Physical Analyses, Corr. Sci., 2003, 45(5), p 1073–1084CrossRefGoogle Scholar
  34. 34.
    X. Zhao, Y. Cheng, W. Fan, C. Vladimir, V. Volha, and T. Alla, Inhibitive Performance of a Rust Converter on Corrosion of Mild Steel, J. Mater. Eng. Perform., 2014, 23(11), p 4102–4108CrossRefGoogle Scholar
  35. 35.
    C. Sun, J. Sun, Y. Wang, X. Lin, X. Li, X. Cheng, and H. Liu, Synergistic Effect of O2, H2S and SO2 Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 System, Corr. Sci., 2016, 107, p 193–203CrossRefGoogle Scholar
  36. 36.
    H. Meng, X. Hu, and A. Neville, A Systematic Erosion–Corrosion Study of Two Stainless Steels in Marine Conditions via Experimental Design, Wear, 2007, 263(1), p 355–362CrossRefGoogle Scholar
  37. 37.
    R.I. Ray, J.S. Lee, B.J. Little, and T. Gerke, The Anatomy of Tubercles: A Corrosion Study in a Fresh Water Estuary, Meter. Corros., 2010, 61(12), p 993–999CrossRefGoogle Scholar
  38. 38.
    P. Pohjanne, L. Carpén, T. Hakkarainen, and P. Kinnunen, A Method to Predict Pitting Corrosion of Stainless Steels in Evaporative Conditions, J. Constr. Steel Res., 2008, 64(11), p 1325–1331CrossRefGoogle Scholar
  39. 39.
    J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, and R. Ojeda, Modelling of Pitting Corrosion in Marine and Offshore Steel Structures—A Technical Review, J. Loss. Prevent. Proc. Ind., 2015, 37, p 39–62CrossRefGoogle Scholar
  40. 40.
    T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corr. Sci., 2006, 48(9), p 2799–2812CrossRefGoogle Scholar
  41. 41.
    J. Wang, F. Wei, Y. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47(1), p 1–8CrossRefGoogle Scholar
  42. 42.
    C. Wen, Y. Tian, G. Wang, J. Hu, and P. Deng, The Influence of Nickel on Corrosion Behavior of Low Alloy Steel in a Cyclic Wet-Dry Condition, Int. J. Electrochem. Sc., 2016, 11(5), p 4161–4173CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Mindong Chen
    • 1
  • Kun Pang
    • 1
  • Zhiyong Liu
    • 1
  • Junsheng Wu
    • 1
  • Xiaogang Li
    • 1
    • 2
  1. 1.Corrosion and Protection Center, Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Ningbo Institute of Material Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China

Personalised recommendations