Skip to main content
Log in

Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 01 August 2018

This article has been updated

Abstract

Densified silicon carbide (SiC) is prepared through dry pressing of SiC powder followed by pressureless sintering in the presence of boron carbide and carbon as the additives. Sintering of SiC parts shows the increase in density with the increase in temperature (1950-2180 °C) by resulting in higher than 98% relative density (RD) at 2150 °C and above for 1 h. Sintered specimens are evaluated concerning the phase, microstructure and mechanical properties including hardness and flexural strength. The machined surface of SiC parts with about 98% RD is studied for the origin of failure. The estimated size of critical flaws (32-110 µm) based on flexural strength and fracture toughness indicates that machining defects are one of the primary reasons for failure in SiC ceramics. The order of magnitude of defects on machined surfaces of sintered SiC by SEM studies is found to be comparable with the estimated size of critical flaws. The failure behavior of SiC is discussed with the help of Weibull statistics with respect to the variation of four-point flexural strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 01 August 2018

    Readers should note the following corrections to this article.

References

  1. K. Yamada and M. Mohri, Properties and Applications of Silicon Carbide Ceramics, Silicon Carbide Ceramics-1: Fundamentals and Solid Reaction, S. Somiya and Y. Inomata, Ed., Elsevier Applied Science, New York, 1991, p 13–44

    Chapter  Google Scholar 

  2. H. Tanaka, Silicon Carbide Powder and Sintered Materials, J. Ceram. Soc. Jap., 2011, 119, p 218–233

    Article  Google Scholar 

  3. S. Goel, The Current Understanding of the Diamond Machining of Silicon Carbide, J. Phys. D Appl. Phys., 2014, 47, p 1–36

    Google Scholar 

  4. M. Omori and H. Takei, Preparation of Pressureless Sintered SiC-Al2O3-Y2O3, J. Mater. Sci., 1998, 23, p 3744–3749

    Article  Google Scholar 

  5. E.V. Zaretsky, Ceramic Bearings for Use in Gas Turbine Engines, J. Mater. Eng. Perform., 2013, 22, p 2830–2846

    Article  Google Scholar 

  6. M.A. Mulla and V.D. Krstic, Mechanical Properties of β-SiC Pressureless Sintered with A12O3 Additions, Acta Metall. Mater., 1994, 42, p 303–308

    Article  Google Scholar 

  7. J.J. Melendez-Martinez, M. Castillo-Rodriguez, and A. Dominguez-Rodriguez, Creep and Microstructural Evolution at High Temperature of Liquid Phase-Sintered Silicon Carbide, J. Am. Ceram. Soc., 2007, 90, p 163–169

    Article  Google Scholar 

  8. J. Chen, N. Li, Y. Wei, H. Han, and W. Yan, Effect of Ferrosilicon Additive and Sintering Condition on Microstructural Evolution and Mechanical Properties of Reaction-Bonded SiC Refractories, Ceram. Inter., 2016, 42, p 17650–17658

    Article  Google Scholar 

  9. D.D. Nesmelov and S.N. Perevislov, Reaction Sintered Materials Based on Boron Carbide and Silicon Carbide, Glass Ceram., 2015, 71, p 313–319

    Article  Google Scholar 

  10. S. Prochazka, The Role of Boron and Carbon in the Sintering of Silicon Carbide, Special Ceramics, 6th ed., P. Popper, Ed., British Ceramic Research Association, Stoke-on Trent, 1975, p 171–182

    Google Scholar 

  11. A. Gubernat, L. Stobierski, and P. Łabaj, Microstructure and Mechanical Properties of Silicon Carbide Pressureless Sintered with Oxide Additives, J. Eur. Ceram. Soc., 2007, 27, p 781–789

    Article  Google Scholar 

  12. Y. Hirata, N. Matsunaga, and S. Sameshima, Densification, Phases, Microstructures and Mechanical Properties of Liquid Phase-Sintered SiC, Key Eng. Mater., 2011, 484, p 124–129

    Article  Google Scholar 

  13. E. Scafe, G. Giunta, L. Fabbri, L.D. Rese, G.D. Portu, and S. Guicciardi, Mechanical Behaviour of Silicon-Silicon Carbide Composites, J. Eur. Ceram. Soc., 2011, 16, p 703–713

    Article  Google Scholar 

  14. G. Zhan and M. Mitomo, Microstructural Control for Strengthening of Silicon Carbide Ceramics, J. Am. Ceram. Soc., 1992, 82, p 2924–2926

    Article  Google Scholar 

  15. S. Kaur, R.A. Cutler, and D.K. Shetty, Short-Crack Fracture Toughness of Silicon Carbide, J. Am. Ceram. Soc., 2009, 92, p 179–185

    Article  Google Scholar 

  16. L. Vargas-Gonzalez and R.F. Speyer, Flexural Strength, Fracture Toughness and Hardness of Silicon Carbide and Boron Carbide armour Ceramics, Inter. J. Appl. Ceram. Technol., 2010, 7, p 643–651

    Article  Google Scholar 

  17. A.A. Wereszczak, T.P. Kirkland, and K.T. Strong, Jr., Size-Scaling of Tensile Failure Stress in a Hot-Pressed Silicon Carbide, Inter. J. Appl. Ceram. Technol., 2010, 7, p 635–642

    Article  Google Scholar 

  18. D.J. Green, An Introduction to Mechanical Properties of Ceramics, 1st ed., Cambridge University Press, New York, 1998, p 189–292

    Book  Google Scholar 

  19. L.A. Ortiz, F. Sanchez-Bajo, F.L. Cumbrera, and F. Guiberteau, X-ray Powder Diffraction Analysis of a Silicon Carbide Based Ceramics, Mater. Lett., 2001, 49, p 137–145

    Article  Google Scholar 

  20. D. Pandey and P. Krishna, The Origin of Polytype Structures, Prog. Cryst. Growth Ch. Mater., 1983, 7, p 213–258

    Article  Google Scholar 

  21. W.J. Clegg, Role of Carbon in the Sintering of Boron-Doped Silicon Carbide, J. Am. Ceram. Soc., 2000, 83, p 1039–1043

    Article  Google Scholar 

  22. A. Gubernat and L. Stobierski, Sintering of Silicon Carbide I. Effect of Carbon, Ceram. Inter., 2003, 29, p 287–292

    Article  Google Scholar 

  23. F.F. Lange and T.K. Gupta, Sintering of SiC with Boron Compounds, J. Am. Ceram. Soc., 1976, 59, p 537–538

    Article  Google Scholar 

  24. A. Malinge, A. Coupe, Y. Petitcorps, and R. Pailler, Pressureless Sintering of Beta-Silicon Carbide Nanoparticles, J. Euro. Ceram. Soc., 2012, 32, p 4393–4400

    Article  Google Scholar 

  25. S.J. Bull, T.F. Page, and E.H. Yoffe, An Explanation of the Indentation Size Effect in Ceramics, Phil. Mag. Lett., 1989, 59, p 281–288

    Article  Google Scholar 

  26. P. Barick, D.C. Jana, and B.P. Saha, Load-Dependent Indentation Behaviour of β-SiAlON and α-Silicon Carbide, J. Adv. Ceram., 2013, 2, p 185–192

    Article  Google Scholar 

  27. B. Zhang, X.L. Zheng, H. Tokura, and M. Yoshikawa, Grinding Induced Damage in Ceramics, J. Mater. Process. Technol., 2003, 132, p 353–364

    Article  Google Scholar 

  28. J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Fundamental Machining Characteristics of Ultrasonic Assisted Internal Grinding of SiC Ceramics, Mater. Manuf. Process., 2014, 29, p 557–563

    Article  Google Scholar 

  29. B. Basu, D. Tiwari, D. Kundu, and R. Prasad, Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials?, Ceram. Inter., 2009, 35, p 237–246

    Article  Google Scholar 

  30. S. Jihong and J. Dongliang, Hot Iso-static Pressing of Presintered Silicon Carbide Ceramics, J. Eur. Ceram. Soc., 1991, 7, p 243–247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Chandra Jana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, D., Barick, P. & Saha, B. Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin. J. of Materi Eng and Perform 27, 2960–2966 (2018). https://doi.org/10.1007/s11665-018-3397-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3397-4

Keywords

Navigation