Skip to main content
Log in

Exploring the Short-Channel Characteristics of Asymmetric Junctionless Double-Gate Silicon-on-Nothing MOSFET

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper presents an analytical model of an asymmetric junctionless double-gate (asymmetric DGJL) silicon-on-nothing metal-oxide-semiconductor field-effect transistor (MOSFET). Solving the 2-D Poisson’s equation, the expressions for center potential and threshold voltage are calculated. In addition, the response of the device toward the various short-channel effects like hot carrier effect, drain-induced barrier lowering and threshold voltage roll-off has also been examined along with subthreshold swing and drain current characteristics. Performance analysis of the present model is also demonstrated by comparing its short-channel behavior with conventional DGJL MOSFET. The effect of variation of the device features due to the variation of device parameters is also studied. The simulated results obtained using 2D device simulator, namely ATLAS, are in good agreement with the analytical results, hence validating our derived model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, Physical Model of the Junctionless UTB SOI-FET, IEEE Trans. Electron Devices, 2012, 59(4), p 941–948

    Article  Google Scholar 

  2. Z. Chen, Y. Xiao, M. Tang, Y. Xiong, J. Huang, J. Li, X. Gu, and Y. Zhou, Surface-Potential-Based Drain Current Model for Long-Channel Junctionless Double-Gate MOSFETs, IEEE Trans. Electron Devices, 2012, 59(12), p 32923298

    Google Scholar 

  3. X. Jin, X. Liu, H.-I. Kwon, J.-H. Lee, and J.-H. Lee, A Subthreshold Current Model for Nanoscale Short Channel Junctionless MOSFETs Applicable to Symmetric and Asymmetric Double-Gate Structure, Solid-State Electron., 2013, 82, p 77–81

    Article  Google Scholar 

  4. S. Naskar and S.K. Sarkar, Quantum Analytical Model for Inversion Charge and Threshold Voltage of Short-Channel Dual-Material Double-Gate SON MOSFET, IEEE Trans. Electron Devices, 2013, 60(9), p 2734–2740

    Article  Google Scholar 

  5. Z. Chen, Y. Xiao, M. Tang, Y. Xiong, J. Huang, J. Li, G. Xiaochen, and Y. Zhou, Surface-Potential-Based Drain Current Model for Long-Channel Junctionless Double-Gate MOSFETs, IEEE Trans. Electron Devices, 2012, 59(12), p 3292–3298

    Article  Google Scholar 

  6. C.-W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, and J.-P. Colinge, High-Temperature Performance of Silicon Junctionless MOSFETs, IEEE Trans. Electron Devices, 2010, 57(3), p 620–625

    Article  Google Scholar 

  7. J.P. Duarte, S.-J. Choi, D.-I. Moon, and Y.-K. Choi, Simple Analytical Bulk Current Model for Long-Channel Double-Gate Junctionless Transistors, IEEE Electron Device Lett., 2011, 32(6), p 704–706

    Article  Google Scholar 

  8. T.-K. Chiang, A Quasi-Two-Dimensional Threshold Voltage Model for Short-Channel Junctionless Double-Gate MOSFETs, IEEE Transactions on Electron Devices, 2012, 59(9), p 2284–2289

    Article  Google Scholar 

  9. K.K. Young, Short-Channel Effect in Fully Depleted SOI, MOSFETs, IEEE Trans. Electron Devices, 1989, 36(2), p 399–402

    Article  Google Scholar 

  10. T.K. Chiang, A New Scaling Theory for Fully-Depleted, SOI, Double-Gate MOSFETs: Including Effective Conducting Path Effect, Solid State Electron., 2005, 49(3), p 317–322

    Article  Google Scholar 

  11. ATLAS User’s Manual, SILVACO Int, Santa Clara, CA, USA, 2015

    Google Scholar 

  12. T.-K. Chiang, A New Quasi-2-D Threshold Voltage Model for Short-Channel Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFETs, IEEE Trans. Electron Devices, 2012, 59(11), p 3127–3129

    Article  Google Scholar 

Download references

Acknowledgments

Priyanka Saha thankfully acknowledges the financial support as PhD fellow under “Visvesvaraya PhD Scheme”, Deit Y, Government of India. Pritha Banerjee would like to thankfully acknowledge the financial support obtained from UGC vide File No. 43-293/2014 (SR) dated 29.12.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Saha.

Appendix

Appendix

\( \phi (x,0) = K_{1} (x) = \phi_{C} (x) \) with \( \phi_{c} (x) \) representing the central potential is a function of x only.

Electric field at y=tsi/2 determined by gate and front oxide layer thickness is given by:

$$ \left. {\frac{\partial \phi (x,y)}{\partial y}} \right|_{{y = \frac{{t_{\text{si}} }}{2}}} = - \frac{{C_{\text{ox}} }}{{\varepsilon_{\text{si}} }}(\phi_{f} (x) - V_{{{\text{gs}}1}} + V_{fb} ) $$
(A.1)

Electric field at y=-tsi/2 determined by gate and air thickness is given by:

$$ \left. {\frac{\partial \phi (x,y)}{\partial y}} \right|_{{y = \frac{{ - t_{\text{si}} }}{2}}} = \frac{{C_{\text{air}} }}{{\varepsilon_{\text{si}} }}(\phi_{b} (x) - V_{\text{gs2}} + V_{fb} ) $$
(A.2)

\( \phi_{f} (x) \) and \( \phi_{b} (x) \) denote front and back surface potentials, respectively.

Using (2), (A.1) and (A.2), arbitrary constants are derived as:

$$ K_{2} (x) = \frac{1}{{2\varepsilon {}_{\text{si}}}}(C_{\text{air}} \phi_{b} (x) - C_{\text{ox}} \phi_{f} (x) + (V_{\text{gs1}} - V_{fb} )C_{\text{ox}} - (V_{\text{gs2}} - V_{fb} )C_{\text{air}} ) $$
(A.3)
$$ K_{3} (x) = - \frac{1}{{2t_{\text{si}} \varepsilon {}_{\text{si}}}}(C_{\text{ox}} \phi_{f} (x) + C_{\text{air}} \phi_{b} (x) - (V_{\text{gs1}} - V_{fb} )C_{\text{ox}} - (V_{\text{gs2}} - V_{fb} )C_{\text{air}} ) $$
(A.4)

Using (2), front and back potentials can be expressed as:

$$ \phi_{f} (x) = \phi_{c} (x) + K_{2} (x)\frac{{t_{\text{si}} }}{2} + K_{3} (x)\frac{{t_{\text{si}}^{2} }}{4} $$
(A.5)
$$ \phi_{b} (x) = \phi_{c} (x) - K_{2} (x)\frac{{t_{\text{si}} }}{2} + K_{3} (x)\frac{{t_{\text{si}}^{2} }}{4} $$
(A.6)

Putting the values of K2(x) and K3(x) in (A.5) and (A.6), front and back potentials in terms of central channel potential are calculated as:

$$ \phi_{f} (x) = \frac{{\phi_{c} (x) + (V_{\text{gs}} - V_{fb} )\frac{{3C_{\text{ox}} C_{\text{si}} + C_{\text{ox}} C_{air} }}{{8C_{\text{si}}^{2} + 4C_{\text{air}} C_{\text{si}} }} - (V_{\text{gs2}} - V_{\text{fb}} )\frac{{C_{\text{air}} }}{{8C_{\text{si}} + 4C_{\text{air}} }}}}{{\frac{{8C_{\text{si}}^{2} + 3C_{\text{si}} C_{\text{air}} + 3C_{\text{si}} C_{\text{ox}} + C_{\text{ox}} C_{\text{air}} }}{{8C_{\text{si}}^{2} + 4C_{\text{air}} C_{\text{si}} }}}} $$
(A.7)
$$ \phi_{b} (x) = \frac{{\phi_{c} (x)\frac{{2C_{\text{si}} + C_{\text{ox}} }}{{2C_{\text{si}} }} - (V_{\text{gs1}} - V_{fb} )\frac{{C_{\text{ox}} }}{{8C_{\text{si}} }} + (V_{\text{gs2}} - V_{\text{fb}} )\frac{{3C_{\text{air}} }}{{8C_{\text{si}} }} + \frac{{8C_{\text{ox}} C_{\text{air}} }}{{64C_{\text{si}}^{2} }}}}{{\frac{{8C_{\text{si}}^{2} + 3C_{\text{si}} C_{\text{air}} + 3C_{\text{si}} C_{\text{ox}} + C_{\text{ox}} C_{\text{air}} }}{{8C_{\text{si}}^{2} }}}} $$
(A.8)

Again, using (A.5) and (A.6) in (2), and differentiating twice with respect to x and y, and eliminating front and back potentials, we can write:

$$ \frac{{\partial^{2} \phi_{C} (x)}}{{\partial x^{2} }} - \frac{{8C_{\text{si}}^{2} (C_{\text{air}} + C_{\text{ox}} ) + 8C_{\text{air}} C_{\text{ox}} C_{\text{si}} }}{{t_{\text{si}} \varepsilon_{\text{si}} (8C_{\text{si}}^{2} + C_{\text{air}} C_{\text{ox}} + 3C_{\text{ox}} C_{\text{si}} + 3C_{\text{air}} C_{\text{si}} )}}\left[ {\phi_{c} (x) - \left\{ {V_{{{\text{gs}}1}} \frac{{4C_{\text{air}} C_{\text{ox}} C_{\text{si}} + 8C_{\text{ox}} C_{\text{si}}^{2} }}{{8C_{si}^{2} (C_{\text{air}} + C_{\text{ox}} ) + 8C_{\text{ox}} C_{\text{si}} C_{\text{air}} }} + V_{\text{gs2}} \frac{{4C_{\text{air}} C_{\text{ox}} C_{\text{si}} + 8C_{\text{air}} C_{\text{si}}^{2} }}{{8C_{\text{si}}^{2} (C_{\text{air}} + C_{\text{ox}} ) + 8C_{\text{ox}} C_{\text{si}} C_{\text{air}} }}} \right\} + V_{fb} - \frac{{qN_{d} t_{\text{si}} (8C_{\text{si}}^{2} + C_{\text{air}} C_{\text{ox}} + 3C_{\text{ox}} C_{\text{si}} + 3C_{\text{air}} C_{\text{si}} )}}{{8C_{\text{si}}^{2} (C_{\text{air}} + C_{\text{ox}} ) + 8C_{\text{air}} C_{\text{ox}} C_{\text{si}} }}} \right] $$
(A.9)

Hence, the generalized scaling equation can be expressed as:

$$ \frac{{\partial^{2} \phi_{C} (x)}}{{\partial x^{2} }} - \frac{1}{{\lambda_{c}^{2} }}(\phi_{c} (x) - \varPhi_{C} ) = 0 $$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Banerjee, P., Dash, D.K. et al. Exploring the Short-Channel Characteristics of Asymmetric Junctionless Double-Gate Silicon-on-Nothing MOSFET. J. of Materi Eng and Perform 27, 2708–2712 (2018). https://doi.org/10.1007/s11665-018-3281-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3281-2

Keywords

Navigation