Skip to main content
Log in

Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from − 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.V. Prasad Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran, and K. BhanuSankaraRao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I, Cyclic Deformation Behavior, Int. J. Fatigue, 2015, 81, p 299–308

    Article  Google Scholar 

  2. G.V. Prasad Reddy, K. Mariappan, R. Kannan, R. Sandhya, S. Sankaran, and K. BhanuSankaraRao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-II, Fatigue Life and Fracture, Int. J. Fatigue, 2015, 81, p 309–317

    Article  Google Scholar 

  3. E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43(5), p 684–691

    Article  Google Scholar 

  4. S.L. Wang, M.X. Zhang, H.C. Wu, and B. Yang, Study on the Dynamic Recrystallization Model and Mechanism of Nuclear Grade 316LN Austenitic Stainless Steel, Mater. Charact., 2016, 118, p 92–101

    Article  Google Scholar 

  5. C.Y. Sun, Y. Xiang, Q.J. Zhou, D.J. Politis, Z.H. Sun, and M.Q. Wang, Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel, Metals, 2016, 6(7), p 152–164

    Article  Google Scholar 

  6. T.S. Byun, N. Hashimoto, and K. Farrell, Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels, Acta Mater., 2004, 52, p 3889–3899

    Article  Google Scholar 

  7. H.X. Pei, H.L. Zhang, L.X. Wang et al., Tensile Behaviour of 316LN Stainless Steel At Elevated Temperatures, Mater. High Temp., 2014, 31(3), p 198–203

    Article  Google Scholar 

  8. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1976

    Google Scholar 

  9. W.G. Dobson and D.L. Johnson, Effect of Strain Rate on Measured Mechanical Properties of Stainless Steel at 4 K, Adv. Cryogenic Eng. Mater., 1984, 30, p 185–192

    Article  Google Scholar 

  10. P. Behjati, A. Kermanpur, A. Najafizadeh, and H. SamaeiBaghbadorani, Microstructural Investigation on Deformation Behavior of High Purity Fe-Cr-Ni Austenitic Alloys During Tensile Testing at Different Temperatures, Mater. Sci. Eng., A, 2014, 618, p 16–21

    Article  Google Scholar 

  11. W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee, Strain-Rate Effects on the Mechanical Behavior of the AISI, 300 Series of Austenitic Stainless Steel Under Cryogenic Environments, Mater. Des., 2010, 31, p 3630–3640

    Article  Google Scholar 

  12. M. Botshekan, S. Degallaix, and Y. Desplanques, Influence of Martensitic Transformation on the Low-Cycle Fatigue Behaviour of 316LN Stainless Steel at 77 K, Mater. Sci. Eng., A, 1997, 234–236, p 463–466

    Article  Google Scholar 

  13. J.G. Qin, C. Dai, G.J. Liao, Y. Wu, X.F. Zhu, C.J. Huang, L.F. Li, K. Wang, X.G. Shen, Z.P. Tu, and H. Ji, Tensile Test of SS 316LN Jacket With Different Conditions, Cryogenics, 2014, 64, p 16–20

    Article  Google Scholar 

  14. E. Nagy, V. Mertinger, F. Tranta, and J. Sólyom, Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Eng., A, 2004, 378, p 308–313

    Article  Google Scholar 

  15. A.K. Dey, D.C. Murdoch, M.C. Mataya, J.C. Speer, and D.K. Matlock, Quantitative Measurement of Deformation-Induced Martensite in 304 Stainless Steel by x-ray Diffraction, Scr. Mater., 2004, 50, p 1445–1449

    Article  Google Scholar 

  16. A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborty, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng., A, 2008, 486, p 283–286

    Article  Google Scholar 

  17. H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel, and K.K. Ray, Structural Variations Ahead of Crack Tip During Monotonic and Cyclic Fracture Tests of AISI, 304LN Stainless Steel, Mater. Sci. Eng., A, 2013, 561, p 88–99

    Article  Google Scholar 

  18. K. Barat, H.N. Bar, D. Mandal, H. Royc, S. Sivaprasad, and S. Tarafder, Low Temperature Tensile Deformation and Acoustic Emission Signal Characteristics of AISI304LN Stainless Steel, Mater. Sci. Eng., A, 2014, 597, p 37–45

    Article  Google Scholar 

  19. G.L. Huang, D.K. Matlock, and G. Krauss, Martensite Formation, Strain Rate Sensitivity, and Deformation Behavior of Type 304 Stainless Steel Sheet, Metall. Mater. Trans. A, 1989, 20, p 1239–1246

    Article  Google Scholar 

  20. T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51(11), p 3063–3071

    Article  Google Scholar 

  21. J.H. Kim, W.S. Park, M.S. Chun, J.J. Kim, J.H. Bae, M.H. Kim, and J.M. Lee, Effect of Pre-straining on Low-Temperature Mechanical Behavior of AISI, 304L, Mater. Sci. Eng., A, 2012, 543, p 50–57

    Article  Google Scholar 

  22. J.A. Jiménez and G. Frommeye, Analysis of the Microstructure Evolution During Tensile Testing at Room Temperature of High Manganese Austenitic Steel, Mater. Charact., 2010, 61, p 221–226

    Article  Google Scholar 

  23. J. Manjanna, S. Kobayashi, Y. Kamada, S. Takahashi, and H. Kikuchi, Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at Room Temperature, J. Mater. Sci., 2008, 43, p 2659–2665

    Article  Google Scholar 

  24. G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, and K. Laha, Creep-Fatigue Interaction Behavior of 316LN Austenitic Stainless Steel with Varying Nitrogen Content, Mater. Des., 2015, 88, p 972–982

    Article  Google Scholar 

  25. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith, Effectsof Strain State and Strain Rate on Deformation-Induced Transformationin 304 Stainless-Steel. Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A-Phys Metall Mater. Sci., 1982, 13(4), p 619–626

    Article  Google Scholar 

  26. V. Shrinivas, S.K. Varma, and L.E. Murr, Deformation-Induced Martensitic Characteristics in 304- Stainless and 316-Stainless Steels During Room-Temperature Rolling, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 1995, 26(3), p 661–671

    Article  Google Scholar 

  27. N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, and S. Jitsukawa, Deformation Mechanisms in 316 Stainless Steel Irradiated at 60°C and 300°C, J. Nucl. Mater., 2000, 283–287, p 528–534

    Article  Google Scholar 

  28. J.W. Brooks, M.H. Loretto, and R.E. Smallman, In Situ Observations of the Formation of Martensite in Stainless Steel, Acta Metall., 1979, 27, p 1829–1838

    Article  Google Scholar 

  29. J.W. Brooks, M.H. Loretto, and R.E. Smallman, Direct Observations of Martensite Nuclei in Stainless Steel, Acta Metall., 1979, 27, p 1839–1847

    Article  Google Scholar 

  30. M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng., A, 2009, 519, p 46–50

    Article  Google Scholar 

  31. B.K. Choudhary, Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behavior of Type 316L(N) Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45(1), p 302–316

    Article  Google Scholar 

  32. S. Sinha, J. Szpunar, N.A.P. KiranKumar, and N.P. Gurao, Tensile Deformation of 316L Austenitic Stainless Steel Using In Situ Electron Back Scatter Diffraction and Crystal Plasticity Simulations, Mater. Sci. Eng., A, 2015, 637, p 48–55

    Article  Google Scholar 

  33. Z.Z. Yuan, Q.X. Dai, X.N. Cheng, K.M. Chen, L. Pan, and A.D. Wang, In Situ SEM Tensile Test of High-Nitrogen Austenitic Stainless Steels, Mater. Charact., 2006, 56, p 79–83

    Article  Google Scholar 

  34. A. Sato, K. Soma, and T. Mori, Hardening Due to Pre-existing ϵ-Martensite in an Fe-30Mn-1Si Alloy Single Crystal, Acta Metall., 1982, 30, p 1901–1907

    Article  Google Scholar 

  35. V. Seetharaman and R. Krishnan, Influence of the Martensitic Transformation on the Deformation Behaviour of an AISI, 316 Stainless Steel at Low Temperatures, J. Mater. Sci., 1981, 16, p 523–530

    Article  Google Scholar 

  36. D. Goodchild, W.T. Roberts, and D.V. Wilson, Plastic Deformation and Phase Transformation in Textured Austenitic Stainless Steel, Acta Metall., 1970, 18, p 1137–1145

    Article  Google Scholar 

  37. T.S. Byun, E.H. Lee, and J.D. Hunn, Plastic Deformation in 316LN Stainless Steel-Characterization of Deformation Microstructures, J. Nucl. Mater., 2003, 321, p 29–39

    Article  Google Scholar 

  38. X.F. Li, J. Chen, L.Y. Ye, W. Ding, and P.C. Song, The Influence of Strain Rate on Tensile Characteristics of SUS304 Metastable Austenitic Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2013, 26(6), p 657–662

    Article  Google Scholar 

  39. X.F. Li, J.J. Li, W. Ding, S.J. Zhao, and J. Chen, Stress Relaxation in Tensile Deformation of 304 Stainless Steel, J. Mater. Eng. Perform., 2017, 26(2), p 630–635

    Article  Google Scholar 

  40. X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao, Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals, Nature, 2010, 464, p 877–880

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants Nos. 50801021 and 51201061, and by the Program for Science, Technology Innovation Talents in Universities of Henan Province (17HASTIT026), the International Cooperation Project from Henan Province (172102410032), Science and Technology Project of Henan Province (152102210077), Education Department of Henan Province (16A430005) and the Science and Technology Innovation Team of Henan University of Science and Technology (2015XTD006). W. Cao acknowledges financial supports from Center for Advance Steel Research (CASR), University of Oulu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., He, T., Lu, Y. et al. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel. J. of Materi Eng and Perform 27, 1232–1240 (2018). https://doi.org/10.1007/s11665-018-3234-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3234-9

Keywords

Navigation