Skip to main content

Advertisement

Log in

Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Experiments were conducted to prepare a borosilicate glass matrix composite containing 50 vol.% tungsten and examine its dynamic compressive behavior at elevated temperatures in the range of 450-775 °C. The results show that the homogenous microstructure of the tungsten/glass composite with relative density of ~ 97% can be obtained by hot-pressing sintering at 800 °C for 1 h under pressure of 30 MPa. Dynamic compressive testing was carried out by a separate Hopkinson pressure bar system with a synchronous device. The results show that the peak stress decreases and the composite transforms from brittle to ductile in nature with testing temperature increasing from 450 to 750 °C. The brittle–ductile transition temperature is about 500 °C. Over 775 °C, the composite loses load-bearing capacity totally because of the excessive softening of the glass phase. In addition, the deformation and failure mechanism were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Sakka and J.D. Mackenzie, Relation Between Apparent Glass Transition Temperature and Liquids Temperature for Inorganic Glasses, J. Non-Cryst. Solids, 1971, 6(2), p 145–162

    Article  Google Scholar 

  2. E.L. Baker, S. DeFisher, A. Daniels, T. Vuong, J. Pham, Glass as a Shaped Charge Liner Material, in Proceedings of the 26th International Symposium on Ballistics, ed. by E. Baker, D. Templeton (Destech Publications, Lancaster, 2011), pp. 340–347

  3. E. Hirsch, Internal Shearing During Shaped Charge Jet Formation and Break-Up, Propellants Explos. Pyrotech., 1992, 17(1), p 27–33

    Article  Google Scholar 

  4. W. Guo, S.K. Li, F.C. Wang, and M. Wang, Dynamic Recrystallization of Tungsten in a Shaped Charge Liner, Scr. Mater., 2009, 60(5), p 329–332

    Article  Google Scholar 

  5. A.C. Gurevitch, L.E. Murr, H.K. Shih, C.-S. Niou, A.H. Advani, D. Manuel, and L. Zernow, Characterization and Comparison of Microstructures in the Shaped-Charge Regime: Copper and Tantalum, Mater. Charact., 1993, 30(3), p 201–216

    Article  Google Scholar 

  6. V. Cannillo, C. Leonelli, T. Manfredini, M. Montorsi, P. Veronesi, E.J. Minay, and A.R. Boccaccini, Mechanical Performance and Fracture Behaviour of Glass–Matrix Composites Reinforced with Molybdenum Particles, Compos. Sci. Technol., 2005, 65(7), p 1276–1283

    Article  Google Scholar 

  7. E. Bernardo, G. Scarinci, and S. Hreglich, Mechanical Properties of Metal-Particulate Lead-Silicate Glass Matrix Composites Obtained by Means of Powder Technology, J. Eur. Ceram. Soc., 2003, 23(11), p 1819–1827

    Article  Google Scholar 

  8. A.R. Boccaccini, D. Acevedo, A.F. Dericioglu, and C. Jana, Processing and Characterisation of Model Optomechanical Composites in the System Sapphire Fibre/Borosilicate Glass Matrix, J. Mater. Process. Technol., 2005, 169(2), p 270–280

    Article  Google Scholar 

  9. I. Dlouhy and A.R. Boccaccini, Preparation, Microstructure and Mechanical Properties of Metal-Particulate/Glass-Matrix Composites, Compos. Sci. Technol., 1996, 56(12), p 1415–1424

    Article  Google Scholar 

  10. A.A. Rubinstein and P. Wang, The Fracture Toughness of a Particulate-Reinforced Brittle Matrix, J. Mech. Phys. Solids, 1998, 46(7), p 1139–1154

    Article  Google Scholar 

  11. A.R. Boccaccini, G. West, J. Janczak, M.H. Lewis, and H. Kern, Tensile Behavior and Cyclic Creep of Continuous Fiber-Reinforced Glass Matrix Composites at Room and Elevated Temperatures, J. Mater. Eng. Perform., 1997, 6(3), p 344–348

    Article  Google Scholar 

  12. Y. Waku, M. Suzuki, Y. Oda, and Y. Kohtoku, Improving the Fracture Toughness of MgO–Al2O3–SiO2 Glass/Molybdenum Composites by the Microdispersion of Flaky Molybdenum Particles, J. Mater. Sci., 1997, 32(17), p 4549–4557

    Article  Google Scholar 

  13. I. Dlouhy, M. Reinisch, A.R. Boccaccini, and J.F. Knott, Fracture Characteristics of Borosilicate Glasses Reinforced by Metallic Particles, Fatigue Fract. Eng. Mater. Struct., 1997, 20(9), p 1235–1253

    Article  Google Scholar 

  14. M. Ferraris and E. Verne, Viscous Phase Sintering of Particle-Reinforced Glass Matrix Composites, J. Eur. Ceram. Soc., 1996, 16(4), p 421–427

    Article  Google Scholar 

  15. M. Chen, S. Zhu, M. Shen, F. Wang, and Y. Niu, Thermophysical Properties of Alumina Particle Reinforced Glass Matrix Composites, Int. J. Appl. Ceram. Technol., 2013, 10(2), p 224–233

    Article  Google Scholar 

  16. M. Kotoul and I. Dlouhy, Metal Particles Constraint in Glass Matrix Composites and Its Impact on Fracture Toughness Enhancement, Mater. Sci. Eng. A, 2004, 387, p 404–408

    Article  Google Scholar 

  17. G. Banuprakash, V. Katyal, V.S.R. Murthy, and G.S. Murty, Mechanical Behaviour of Borosilicate Glass-Copper Composites, Compos. Part Appl. Sci. Manuf., 1997, 28(9–10), p 861–867

    Article  Google Scholar 

  18. G. Otieno, A. Koos, F. Dillon, N.A. Yahya, C.E. Dancer, G.M. Hughes, N. Grobert, and R.I. Todd, Stiffness, Strength and Interwall Sliding in Aligned and Continuous Multi-walled Carbon Nanotube/Glass Composite Microcantilevers, Acta Mater., 2015, 100, p 118–125

    Article  Google Scholar 

  19. J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, and C.R. Siviour, Review of Experimental Techniques for High Rate Deformation and Shock Studies, Int. J. Impact Eng., 2004, 30(7), p 725–775

    Article  Google Scholar 

  20. J. Harding and L.M. Welsh, A Tensile Testing Technique for Fibre-Reinforced Composites at Impact Rates of Strain, J. Mater. Sci., 1983, 18(6), p 1810–1826

    Article  Google Scholar 

  21. M. Rieth and A. Hoffmann, Influence of Microstructure and Notch Fabrication on Impact Bending Properties of Tungsten Materials, Int. J. Refract. Met. Hard Mater., 2010, 28(6), p 679–686

    Article  Google Scholar 

  22. L. Wang, Y. Wang, A.P. Zhilyaev, A.V. Korznikov, S. Li, E. Korznikova, and T.G. Langdon, Dynamic Compressive Behavior of Ultrafine-Grained Pure Ti at Elevated Temperatures after Processing by ECAP, J. Mater. Sci., 2014, 49(19), p 6640–6647

    Article  Google Scholar 

  23. W.S. Lee, G.L. Xiea, and C.F. Lin, The Strain Rate and Temperature Dependence of the Dynamic Impact Response of Tungsten Composite, Mater. Sci. Eng. A, 1998, 257(2), p 256–267

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding of National Key Laboratory of Science and Technology on Materials under Shock and Impact under Grant No. 9140C320102150C32001 and the National Natural Science Foundation of China under Grant No. 51671030.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Wang, Y., Ma, X. et al. Preparation and Dynamic Mechanical Properties at Elevated Temperatures of a Tungsten/Glass Composite. J. of Materi Eng and Perform 27, 1040–1046 (2018). https://doi.org/10.1007/s11665-018-3230-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3230-0

Keywords

Navigation