Skip to main content

Advertisement

Log in

Fabrication of Ta-Reinforced Cu-Based Bulk Metallic Glass Composites by High-Pressure Torsion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ex situ Cu54Zr22Ti18Ni6 matrix bulk metallic glass composites (BMGCs) reinforced with Ta particles (10–30 vol.%) were fabricated by high-pressure torsion (HPT) under applied pressure of 6 GPa for 1–3 turns at temperatures of 25 or 200 °C. The densification, structure, thermal, and mechanical properties of BMGC samples were investigated by Archimedes densitometry, optical microscopy, x-ray diffraction, differential scanning calorimetry, small punch test, and microhardness measurements. Near full-density BMGC disks (relative densities higher than 0.97) are fabricated using HPT, irrespective of the processing strain and temperature. The microhardness of BMGCs is improved by increasing the number of turns, or the processing temperature due to the improvement in the deformation degree of both the amorphous and Ta particles as well as the reduction in the interlayer spacing of Ta particles. Nevertheless, there is an optimal amount of Ta which gives rise to the peak hardness in the BMGC samples, depending on the amount of imposed strain during HPT. The results of small punch test indicate that the addition of Ta to the monolithic BMG and increasing the HPT temperature significantly enhance the fracture load and deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48, p 279–306

    Article  Google Scholar 

  2. A.L. Greer, Metallic Glasses, Science, 1995, 267, p 1947–1953

    Article  Google Scholar 

  3. J. Cui, J.S. Li, J. Wang, and H.C. Kou, Microstructure Evolution and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite, J. Mater. Eng. Perform., 2015, 24, p 2354–2358

    Article  Google Scholar 

  4. M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, and D.H. Kim, A Development of Ni-Based Alloys with Enhanced Plasticity, Intermetallics, 2004, 12, p 1133–1137

    Article  Google Scholar 

  5. H.S. Kim, P.J. Warren, B. Cantor, and H.R. Lee, Mechanical Properties of Partially Crystallized Aluminum Based Amorphous Alloys, Nanostruct. Mater., 1999, 11, p 241–247

    Article  Google Scholar 

  6. H. Kato, K. Yubuta, D.V. Louzguine, A. Inoue, and H.S. Kim, Influence of Nanoprecipitation on Strength of Cu60Zr30Ti10 Glass Containing µm-ZrC Particle Reinforcements, Scripta Mater., 2004, 51, p 577–581

    Article  Google Scholar 

  7. L. Liu, K.C. Chan, M. Sun, and Q. Chen, The Effect of the Addition of Ta on the Structure, Crystallization and Mechanical Properties of Zr–Cu–Ni–Al–Ta Bulk Metallic Glasses, Mater. Sci. Eng., A, 2007, 445–446, p 697–706

    Article  Google Scholar 

  8. K. Edalati and Z. Horita, A Review on High-Pressure Torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, 2016, 652, p 325–352

    Article  Google Scholar 

  9. Z.M. Jiao, Z.H. Wang, R.F. Wu, T.W. Zhang, H.J. Yang, and J.W. Qiao, Dynamic Deformation Behaviors of an In Situ Ti-Based Metallic Glass Matrix Composite, J. Mater. Eng. Perform., 2016, 25, p 4729–4734

    Article  Google Scholar 

  10. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, “Work-Hardenable” Ductile Bulk Metallic Glass, Phys. Rev. Lett., 2005, 94, p 205501

    Article  Google Scholar 

  11. C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Lett., 2000, 84, p 2901–2904

    Article  Google Scholar 

  12. P. Denisa, C.M. Meylan, C. Ebner, A.L. Greer, M. Zehetbauer, and H.-J. Fecht, Rejuvenation Decreases Shear Band Sliding Velocity in Pt-Based Metallic Glasses, Mater. Sci. Eng. A, 2017, 684, p 517–523

    Article  Google Scholar 

  13. P. Henits, A. Revesz, and Z. Kovacs, Free Volume Simulation for Severe Plastic Deformation of Metallic Glasses, Mech. Mater., 2012, 50, p 81–87

    Article  Google Scholar 

  14. S.-H. Joo, D.H. Phee, A.D. Setyawan, H. Kato, M. Janecek, Y.C. Kim, S. Lee, and H.S. Kim, Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion, Sci. Rep., 2015, 5, p 9660

    Article  Google Scholar 

  15. H.S. Kim, S.I. Hong, Y.S. Lee, A.A. Dubravina, and I.V. Alexandrov, Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142, p 334–337

    Article  Google Scholar 

  16. X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure-Hardness Relationship in an Al-4 wt.% Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915

    Article  Google Scholar 

  17. H. Asgharzadeh, S.H. Joo, and H.S. Kim, Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion, Metall. Mater. Trans. A, 2014, 45, p 4129–4137

    Article  Google Scholar 

  18. H. Asgharzadeh, S.H. Joo, and H.S. Kim, Al/C60 Nanocomposites Fabricated by High-Pressure Torsion, Metall. Mater. Trans. A, 2015, 46, p 1838–1842

    Article  Google Scholar 

  19. J.Y. Kang, J.G. Kim, H.W. Park, and H.S. Kim, Multiscale Architectured Materials with Composition and Grain Size Gradients Manufactured Using High Pressure Torsion, Sci. Rep., 2016, 6, p 26590

    Article  Google Scholar 

  20. A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals And Applications, Prog. Mater Sci., 2008, 53, p 893–979

    Article  Google Scholar 

  21. S.-H. Joo, D.-H. Pi, J. Guo, H. Kato, S. Lee, and H.S. Kim, Enhanced Wear Resistivity of a Zr-Based Bulk Metallic Glass Processed by High-Pressure Torsion Under Reciprocating Dry Conditions, Metal Mater. Int., 2016, 22, p 383–390

    Article  Google Scholar 

  22. J. Vierke, G. Schumacher, V.P. Pilyugin, I.A. Denks, I. Zizak, C. Wolf, N. Wanderka, M. Wollgarten, and J. Banhart, Deformation Induced Crystallization in Amorphous Al85Ni10La5 alloy, J. Alloy. Compd., 2010, 493, p 683–691

    Article  Google Scholar 

  23. Z. Kovacs, P. Henits, A.P. Zhilyaev, and A. Revesz, Deformation Induced Primary Crystallization in a Thermally Non-Primary Crystallizing Amorphous Al85Ce8Ni5Co2 Alloy, Scripta Mater., 2006, 54, p 1733–1737

    Article  Google Scholar 

  24. S. Hobor, Z. Kovacs, and A. Revesz, Effect of Accumulated Shear on the Microstructure and Morphology of Severely Deformed Cu60Zr30Ti10 Metallic Glass, J. Alloy. Compd., 2011, 509, p 8641–8648

    Article  Google Scholar 

  25. J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert, and M.D. Baro, Cold-Consolidation of Ball Milled Fe-Based Amorphous Ribbons by High Pressure Torsion, Scripta Mater., 2004, 50, p 1221–1225

    Article  Google Scholar 

  26. G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina, Nanocrystal Formation, Structure And Magnetic Properties of Fe–Si–B Amorphous Alloy After Deformation, Mater. Lett., 2013, 97, p 15–17

    Article  Google Scholar 

  27. T. Czeppe, G. Korznikova, J. Morgiel, A. Korznikov, N.Q. Chinh, P. Ochin, and A. Sypien, Microstructure and Properties of Cold Consolidated Amorphous Ribbons from (NiCu)ZrTiAlSi alloys, J. Alloy. Compd., 2009, 483, p 74–77

    Article  Google Scholar 

  28. N. Van Steenberge, S. Hobor, S. Suri˜nach, A. Zhilyaev, F. Houdellier, F. Mompiou, M.D. Baro, A. Revesz, and J. Sort, Sort, Effects of Severe Plastic Deformation on the Structure And Thermo-Mechanical Properties of Zr55Cu30Al10Ni5 Bulk Metallic Glass, J. Alloy. Compd., 2010, 500, p 61–67

    Article  Google Scholar 

  29. Y.F. Sun, H. Fujii, N. Tsuji, Y. Todaka, and M. Umemoto, Fabrication of ZrAlNiCu Bulk Metallic Glass Composites Containing Pure Copper Particles by High-Pressure Torsion, J. Alloy. Compd., 2010, 492, p 149–152

    Article  Google Scholar 

  30. X. Sauvage, Y. Champion, R. Pippan, F. Cuvilly, L. Perrie`re, A. Akhatova, and O. Renk, Structure and Properties of a Nanoscaled Composition Modulated Metallic Glass, J. Mater. Sci., 2014, 49, p 5640–5645

    Article  Google Scholar 

  31. H. Asgharzadeh, S.-H. Joo, J.-K. Lee, and H.S. Kim, Consolidation of Cu-based amorphous alloy powders by high-pressure torsion, J. Mater. Sci., 2015, 50, p 3164–3174

    Article  Google Scholar 

  32. D. Meng, J. Yi, D.Q. Zhao, D.W. Ding, H.Y. Bai, M.X. Pan, and W.H. Wang, Tantalum based bulk metallic glasses, J. Non-Cryst. Solid., 2011, 357, p 1787–1790

    Article  Google Scholar 

  33. A. Slipenyuk and J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scripta Mater., 2004, 50, p 39–44

    Article  Google Scholar 

  34. A. Concustell, F.O. Mear, S. Surinach, M.D. Baro, and A.L. Greer, Structural Relaxation and Rejuvenation in a Metallic Glass Induced by Shot-Peening, Philos. Mag. Lett., 2009, 89, p 831–840

    Article  Google Scholar 

  35. L. Krämer, K.S. Kormout, D. Setman, Y. Champion, and R. Pippan, Production of Bulk Metallic Glasses by Severe Plastic Deformation, Metals, 2015, 2, p 720–729

    Article  Google Scholar 

  36. K.B. Kim, P.J. Warren, and B. Cantor, Structural Relaxation and Glass Transition Behavior of Novel (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 Alloy Developed by Equiatomic Substitution, J. Non-Cryst. Solid., 2007, 353, p 3338–3341

    Article  Google Scholar 

  37. Y.-K. Xu, H. Ma, J. Xu, and E. Ma, Mg-Based Bulk Metallic Glass Composites with Plasticity and Gigapascal Strength, Acta Mater., 2005, 53, p 1857–1866

    Article  Google Scholar 

  38. B.A. Sun and W.H. Wang, The Fracture of Bulk Metallic Glasses, Prog. Mater Sci., 2015, 74, p 211–307

    Article  Google Scholar 

  39. K.M. Flores and R.H. Dauskardt, Local Heating Associated with Crack Tip Plasticity in Zr–Ti–Ni–Cu–Be Bulk Amorphous Metals, J. Mater. Res., 1999, 14, p 638–643

    Article  Google Scholar 

  40. Y.K. Xu and J. Xu, Ceramics Particulate Reinforced Mg65Cu20Zn5Y10 Bulk Metallic Glass Composites, Scripta Mater., 2003, 49, p 843–848

    Article  Google Scholar 

  41. G. Chen, J.L. Cheng, and C.T. Liu, Large-sized Zr-Based Bulk-Metallic-Glass Composite with Enhanced Tensile Properties, Intermetallics, 2012, 28, p 25–33

    Article  Google Scholar 

  42. R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel, Micromechanics of Deformation of Metallic-Glass–Matrix Composites from In Situ Synchrotron Strain Measurements and Finite Element Modeling, Acta Mater., 2005, 153, p 883–1893

    Google Scholar 

  43. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Ta-Particulate Reinforced Zr-Based Bulk Metallic Glass Matrix Composite with Tensile Plasticity, Scripta Mater., 2010, 62, p 278–281

    Article  Google Scholar 

  44. D.H. Bae, M.H. Lee, D.H. Kim, and D.J. Sordelet, Plasticity in Ni59Zr20Ti16Si2Sn3Ni59Zr20Ti16Si2Sn3 Metallic Glass Matrix Composites Containing Brass Fibers Synthesized by Warm Extrusion of Powders, App. Phys. Lett., 2003, 83, p 2312

    Article  Google Scholar 

  45. D.G. Pan, H.F. Zhang, A.M. Wang, and Z.Q. Hu, Enhanced Plasticity in Mg-Based Bulk Metallic Glass Composite Reinforced with Ductile Nb Particles, App. Phys. Lett., 2006, 89, p 261904

    Article  Google Scholar 

  46. J.B. Li, J.S.C. Jang, C. Li, S.R. Jian, P.H. Tsai, J.D. Hwang, J.C. Huang, and T.G. Nieh, Significant Plasticity Enhancement of ZrCu-Based Bulk Metallic Glass Composite Dispersed by In Situ and Ex Situ Ta Particles, Mater. Sci. Eng. A, 2012, 551, p 249–254

    Article  Google Scholar 

  47. H. Ma, J. Xu, and E. Ma, Mg-Based Bulk Metallic Glass Composites with Plasticity and High Strength, App. Phys. Lett., 2003, 83, p 2793

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Prof. H.S. Kim (Director of SNMPL laboratory at Pohang University of Science and Technology, POSTECH) for all of the provided support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Asgharzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, H. Fabrication of Ta-Reinforced Cu-Based Bulk Metallic Glass Composites by High-Pressure Torsion. J. of Materi Eng and Perform 27, 4090–4099 (2018). https://doi.org/10.1007/s11665-018-3473-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3473-9

Keywords

Navigation