Skip to main content
Log in

Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Micro-lattice structures manufactured using the selective laser melting (SLM) process provides the opportunity to realize optimal cellular materials for impact energy absorption. In this paper, strain rate-dependent material properties are measured for stainless steel 316L SLM micro-lattice struts in the strain rate range of 10−3 to 6000 s−1. At high strain rates, a novel version of the split Hopkinson Bar has been developed. Strain rate-dependent materials data have been used in Cowper–Symonds material model, and the scope and limit of this model in the context of SLM struts have been discussed. Strain rate material data and the Cowper–Symonds model have been applied to the finite element analysis of a micro-lattice block subjected to drop weight impact loading. The model output has been compared to experimental results, and it has been shown that the increase in crush stress due to impact loading is mainly the result of strain rate material behavior. Hence, a systematic methodology has been developed to investigate the impact energy absorption of a micro-lattice structure manufactured using additive layer manufacture (SLM). This methodology can be extended to other micro-lattice materials and configurations, and to other impact conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y. Shen, S. McKown, S. Tsopanos, S.C. Sutcliffe, R.A.W. Mines, and W.J. Cantwell, The Mechanical Properties of Sandwich Structures Based on Metal Lattice Architectures, J. Sandw. Struct. Mater., 2009, 12(2), p 159–180

    Article  Google Scholar 

  2. S. Tsopanos, R.A.W. Mines, S. McKown, Y. Shen, W. Cantwell, W. Brooks, and C.J. Sutcliffe, The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Micro-Lattice Structures, J. Manuf. Sci. E-T ASME, 2010, 132(4), p 41011

    Article  Google Scholar 

  3. R. Gümrük and R.A.W. Mines, Compressive Behavior of Stainless Steel Micro-Lattice Structures, Int. J. Mech. Sci., 2013, 68, p 125–139

    Article  Google Scholar 

  4. R. Gümrük, R.A.W. Mines, and S. Karadeniz, Static Mechanical Behaviors of Stainless Steel Micro Lattice Structures Under Different Loading Conditions, Mater. Sci. Eng. A, 2013, 586, p 392–406

    Article  Google Scholar 

  5. S. McKown, Y. Shen, W.K. Brookes, C.J. Sutcliffe, W.J. Cantwell, G.S. Langdon, G.N. Nurick, and M.D. Theobald, The Quasi-static and Blast Loading Response of Lattice Structures, Int. J. Impact Eng., 2008, 35, p 795–810

    Article  Google Scholar 

  6. M. Smith, W.J. Cantwell, Z. Guan, S. Tsopanos, M.D. Theobald, G.N. Nurick, and G.S. Langdon, The Quasi-static and Blast Response of Steel Lattice Structures, J. Sandw. Struct. Mater., 2011, 13(4), p 479–501

    Article  Google Scholar 

  7. G.N. Labeas and M.M. Sunaric, Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures, Strain, 2008, 46, p 195–204

    Article  Google Scholar 

  8. K. Ushijima, W.J. Cantwell, R.A.W. Mines, S. Tsopanos, and M. Smith, An Investigation into the Compressive Properties of Stainless Steel Micro-Lattice Structures, J. Sandw. Struct. Mater., 2011, 13(3), p 303–329

    Article  Google Scholar 

  9. S. Lee, F. Barthelat, J.W. Hutchinson, and H.D. Espinosa, Dynamic Failure of Metallic Pyramidal Truss Core Materials—Experiment and Modeling, Int. J. Plast., 2006, 22, p 2118–2145

    Article  Google Scholar 

  10. S. Lee, F. Barthelat, N. Moldovan, H.D. Espinosa, and H.N.G. Wadley, Deformation Rate Effects on Failure Modes of Open Cell Al Foams and Textile Materials, Int. J. Sol. Struct., 2006, 43, p 53–73

    Article  Google Scholar 

  11. A.G. Evans, M.Y. He, V.S. Deshpande, J.W. Hutchinson, A.J. Jacobsen, and W.B. Carter, Concepts for Enhanced Energy Absorption Using Hollow Micro Lattices, Int. J. Imp. Eng., 2010, 37, p 947–959

    Article  Google Scholar 

  12. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, Ultralight Metallic Micro Lattices, Science, 2011, 334, p 962–965

    Article  Google Scholar 

  13. D.N. Fang, Y.L. Li, and H. Zhao, On the Behavior Characterization of Metallic Cellular Materials under Impact Loading, Acta Mech. Sin., 2010, 26, p 837–846

    Article  Google Scholar 

  14. M.Z. Mahmoudabadi and M. Sadighi, A Theoretical and Experimental Study on Metal Hexagonal Honeycomb Crushing under Quasi Static and Low Velocity Impact Loading, Mater. Sci. Eng. A, 2011, 528, p 4958–4966

    Article  Google Scholar 

  15. T.A. Schaedler, C.J. Ro, A.E. Sorensen, S.S. Yang, W.B. Carter, and A.J. Jacobsen, Designing Metallic Micro Lattices for Energy Absorber, Adv. Eng. Mater., 2014, 16(1), p 276–283

    Article  Google Scholar 

  16. Y. Liu, T.A. Schaedler, and X. Chen, Dynamic Energy Absorption Characteristics of Hollow Micro Lattice Structures, Mech. Mater., 2014, 77, p 1–13

    Article  Google Scholar 

  17. Z. Ozdemir, E. Hernandez-Nava, A. Tyas, J.A. Warren, S.D. Fay, R. Goodall, L. Toddy, and H. Askes, Energy Absorption in Lattice Structures in Dynamics: Experiments, Int. J. Imp. Eng., 2016, 89, p 49–61

    Article  Google Scholar 

  18. R.A.W. Mines, S. Tsopanos, Y. Shen, R. Hasan, and S.T. McKown, Drop Weight Impact Behavior of Sandwich Panels with Metallic Micro Lattice Cores, Int. J. Imp. Eng., 2013, 60, p 120–132

    Article  Google Scholar 

  19. I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, and R.D. Wildman, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 670, p 264–274

    Article  Google Scholar 

  20. E. Abele, H.A. Stoffregen, K. Klimkeit, H. Hoche, and M. Oeshsner, Optimisation of Process Parameters for Lattice Structures, Rapid Prototyp. J., 2015, 21(1), p 117–127

    Article  Google Scholar 

  21. M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, J. O. M., 2016, 68(3), p 747–764

    Google Scholar 

  22. J. Bűltmann, S. Merkt, C. Hammer, C. Hinke, and P. Ulrich, Scalability of the Mechanical Properties of Selective Laser Melting Produced Micro Struts, J. Laser Appl., 2015, 27(S2), S29206, p 1–7.

  23. J.W. Hutchinson, Plasticity at the Micron Scale, Int. J. Sol. Struct., 2000, 37, p 225–238

    Article  Google Scholar 

  24. Y. Shen, High Performance Sandwich Structures Based on Novel Metal Cores, Ph.D. University of Liverpool, UK, 2009

  25. R. Hasan, Progressive Collapse of Titanium Alloy Micro Lattice Structures Manufactured Using Selective Laser Melting, Ph.D. Thesis, University of Liverpool, UK, 2013

  26. Cambridge Engineering Selector, Properties: Stainless Steel Austenitic AISI 316L Wrought, Cold Annealed, Accessed, 2012

  27. N.A. Fleck, Some Aspects of Clip Gauge Design, Strain, 1983, 10, p 17–21

    Article  Google Scholar 

  28. Y. Shen, W. Cantwell, R. Mines, and Y. Li, Low Velocity Impact Performance of Lattice Structure Core Based Sandwich Panels, J. Comp. Mater., 2014, 48(25), p 3153–3167

    Article  Google Scholar 

  29. I. Ullah, M. Brandt, and S. Feih, Failure and Energy Absorption Characteristics of Advanced 3D Truss Core Structures, Mater. Des., 2016, 92, p 937–948

    Article  Google Scholar 

  30. G.S. Langdon and G.K. Schleyer, Unusual Strain Rate Sensitive Behavior of AISI, 316L Austenitic Stainless Steel, J. Strain Anal., 2004, 39(1), p 71–86

    Article  Google Scholar 

  31. M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994

    Book  Google Scholar 

  32. H. Huh, W.J. Kang, and S.S. Han, A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals, Exp. Mech., 2002, 42(1), p 8–17

    Article  Google Scholar 

  33. L.Y. Li and T.C.K. Molyneaux, Dynamic Constitutive Equations and Behavior of Brass at High Strain Rates, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 1995, 209, p 287–293

    Article  Google Scholar 

  34. O.S. Lee and G.H. Kim, Thickness Effects on Mechanical Behavior of a Composite Material (1001P) and Polycarbonate in Split Hopkinson Pressure Bar Technique, J. Mater. Sci. Lett., 2000, 19, p 1805–1808

    Article  Google Scholar 

  35. P.S. Follansbee, The Hopkinson Bar, in Metals Handbook, 9th ed., Mechanical Testing, vol. 8, American Society for Metals, 1985, p 198–203

  36. N. Jones, Structural Impact, 2nd ed., Cambridge University Press, Cambridge, 2012

    Google Scholar 

  37. M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218

    Article  Google Scholar 

  38. M. Sasso, G. Newaz, and D. Amodio, Material Characterization at High Strain Rate Hopkinson Bar Tests and Finite Element Optimization, Mater. Sci. Eng. A, 2008, 487, p 289–300

    Article  Google Scholar 

  39. M. Smith, Z. Guan, and W.J. Cantwell, Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mech. Sci., 2013, 67, p 28–41

    Article  Google Scholar 

  40. P. Li, N. Petrinic, and C.R. Siviour, Baseline Metal and CM Core Properties: Micro Lattice Structure, Deliverable: 3-1-1b Report, CELPACT (Cellular Materials for Impact Performance), 2009

  41. T. Tancogne-Dejean, A.B. Spierings, and D. Mohr, Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading, Acta. Mater., 2016, 116, p 14–28

    Article  Google Scholar 

  42. LS DYNA Theory Manual, LSTC, 2016

  43. B. Burgan, Elevated Temperature and High Strain Rate Properties of Offshore Steels, Steel Construction Institute, Offshore Technology Report 2001/020, 2001

Download references

Acknowledgments

Access to the Selective Laser Melting machine was provided by Prof. Chris Sutcliffe, from the University of Liverpool. The visit of R. Gümrük to the University of Liverpool was supported by the Council of Higher Education of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Gümrük.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümrük, R., Mines, R.A.W. & Karadeniz, S. Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method. J. of Materi Eng and Perform 27, 1016–1032 (2018). https://doi.org/10.1007/s11665-018-3208-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3208-y

Keywords

Navigation